Delphi - Passing large sets of data between routines - delphi

Delphi XE6 - looking to write 3 or 4 RELATED applications, all of which will be using the same basic data routines, so I am looking to make a common, flexible API which all the apps will use. My issue comes about with one portion of the API, moving COMPANY data. Data on a company will have around 30 attributes, MOST of which will come from a table, but a handful will be calculations, etc... I can put this in a simple class.
My question comes from the fact that I will not always know HOW MANY companies will get passed between routines. For example, I will have an API call that says "Look for Company name starting with some value. There might be 1 or there might be 15. How do I process the data in the subroutine but then provide access to it in the calling routine. My first thought is to use a VAR TObjectList. The called routine will then CLEAR the TObjectList, process the data, and ADD to the TObjectList. I have not worked with TObjectList before. Is there a reason NOT to do this?

You can use a callback routine: a routine (A) that you pass as parameter to the companies extracting routine (B). B calls A for each matching record found in the dataset.
{MainForm}
procedure TMainForm.HandleCompany(ACompany: TCompany);
begin
//For example
Memo1.Lines.Add(ACompany.Name);
Memo1.Lines.Add(ACompany.Address);
end;
procedure TMainForm.Button1Click(Sender: TObject);
begin
MyAPI.GetCompanies(HandleCompany);
end;
{MyAPI}
type
TCompanyHandler = procedure (ACompany: TCompany) {of object};
procedure GetCompanies(CompanyHandler: TCompanyHandler);
var
Company: TCompany;
begin
for Company in Companies do
CompanyHandler(Company);
end;

Related

How can I serialise records containing static arrays (of char) - working around RTTI

I need to be able to pass the same set of structures (basically arrays of different records) over two different interfaces
The first (legacy) which is working requires a pointer to a record and the record size
The second, which I am attempting to develop, is type-safe and requires individual fields to be set using Get/Set methods for each field
Existing code uses records (probably around 100 or so) with memory management being handled in a 3rd party DLL (i.e. we pass the record pointer and size to it and it deals with memory management of new records).
My original thought was to bring the memory management into my app and then copy over the data on the API call. This would be easy enough with the old interface, as I just need to be able to access SizeOf() and the pointer to the record structure held in my internal TList. The problem comes when writing the adapter for the new type-safe interface
As these records are reliant on having a known size, there is heavy use of array 0..n of char static arrays, however as soon as I try to access these via 2010-flavour RTTI I get error messages stating 'Insufficient RTTI information available to support this operation'. Standard Delphi strings work, but old short-strings don't. Unfortunately, fixing string lengths is important for the old-style interface to work properly. I've had a look at 3rd party solutions such as SuperObject and the streaming in MorMot, though they can't do anything out of the box which doesn't give me too much hope of a solution not needing significant re-work.
What I want to be able to do is something like the following (don't have access to my Delphi VM at the moment, so not perfect code, but hopefully you get the gist):
type
RTestRec = record
a : array [0..5] of char;
b : integer;
end;
// hopefully this would be handled by generic <T = record> or passing instance as a pointer
procedure PassToAPI(TypeInfo: (old or new RTTI info); instance: TestRec)
var
Field: RTTIField;
begin
for Field in TypeInfo.Fields do
begin
case Field.FieldType of
ftArray: APICallArray(Field.FieldName, Field.Value);
ftInteger: APICallInteger(Field.FieldName, Field.Value.AsInteger);
...
end;
end;
Called as:
var
MyTestRec: RTestRec;
begin
MyTestRec.a := 'TEST';
MyTestRec.b := 5;
PassToAPI(TypeInfo(TestRec), MyTestRec);
end;
Can the lack of RTTI be forced by a Compiler flag or similar (wishful thinking I feel!)
Can a mixture of old-style and new-style RTTI help?
Can I declare the arrays differently to give RTTI but still having the size constraints needed for old-style streaming?
Would moving from Records to Classes help? (I think I'd need to write my own streaming to an ArrayOfByte to handle the old interface)
Could a hacky solution using Attributes help? Maybe storing some of the missing RTTI information there? Feels like a bit of a long-term maintenance issue, though.

Creating and destroying objects in Delphi

I am new to Delphi and am trying to better understand object creation / freeing as I am used to the luxury of .NET's GC. I have two questions specifically:
Let's assume I am setting a TDataSource as below. In .NET I wouldn't explicitly destroy the object as I am with adoQuery.Free. But I am assuming that with Delphi I need to free these objects. However, by destroying the adoQuery I am also setting the dataset to null. In this way adoQuery is meant to be a locally scoped variable to the function only with the datsource being retuned from the function. Therefore, how can I best handle this?
dataSrc := TDataSource.Create(nil);
dataSrc.DataSet := adoQuery;
dataSrc.Enabled := true;
{ adoQuery.Free; }
cnt := DataSrc.DataSet.RecordCount;
I've been reading several suggestions when returning a variable from a function that the best thing to do is create the variable within the caller and pass it to the subroutine. Therefore, the signature to a function would look like:
AdoConnectionManager.GetResult(query : String; dataSrc: TDataSource) : TDataSource;
Result := dataSrc;
This is unattractive to me. I'd prefer to have a new variable created within the subroutine and then returned back to the caller. However, this is something again I never really had to worry about with .NET GC and here I have to explicitly destroy the variable, right?
Thanks!
You've asked two questions. One concerns these database classes, and I'm going to ignore that question since I don't know anything about those classes. Instead I will answer the other questions. Do note that this sort of answer is why the site policy is for questions to be asked one at a time.
Regarding a function that returns a new object, that is certainly viable. However, it is sometimes more flexible to let the caller supply the object. That allows them to re-use instance, or supply objects that are derived from a base class. A classic example would be a function that populated a TStrings instance.
In this scenario you'd probably use a procedure rather than a function. It might look like this:
procedure PopulateList(List: TMyList);
If you want to have a function that returns a newly minted instance that would be done like so:
function CreateAndPopulateList: TMyList;
begin
Result := TMyList.Create;
try
// code to populate Result goes here, and may raise exceptions
except
Result.Free; // in case of exceptions, we must destroy the instance to avoid leaks
raise;
end;
end;
Note the naming. I use create to imply to the caller that a new instance is created. The calling code would look like this:
List := CreateAndPopulateList;
try
// do stuff with list
finally
List.Free;
end;
And this pattern is the standard object creation pattern. So you use CreateAndPopulateList just as you could a constructor.
It should also be mentioned here, that Delphi also provides Reference-Counting (but different to .NET).
The very short explanation to Reference-Counting in Delphi:
In difference to other Languagues, Reference-Counting in Delphi is only available by using Interfaces. Further, there is no Garbage-Collector: a reference-counted Object gets instantly destroyed when its Referencecount reaches 0.
So as an Delphi Developer, there are the following "global" Rules for destroying Instances:
- you do destroy an Object manually, whenever it's declared as a ClassType (e.g. var m: TMyClass)
- you never destroy an Object manually, whenever it's declared as a InterfaceType (e.g. var m: IMyClass)
With Delphi when you create an object, you should decide how it would be freed. There are several ways:
You can free it manually
It can be freed together with it's owner
It can be freed as a part of TObjectList or similar container
It can be freed because it's interfaced and reference counter for it became zero
And so on...
About first question: you should understand that with Delphi object variable is a pointer to object. When leaving function, you can lost locally scoped (pointer) variable, but you don't harm object itself. For example, you can do something like this:
function GetDataSource: TDataSource;
var Query: TADOQuery;
begin
Result := TDataSource.Create(nil);
Query := TADOQuery.Create(Result);
Query.SQL.Text := ' ... ';
Result.DataSet := Query;
end;
It'll give you datasource you want with background query. When you free this datasource, query also would be freed.
About second question: intrafunction creation of return object is a normal practise, part of good design. Yes, you should decide who will free this object and how. You can use many strategies, there are no silver bullet here. Just for example, you can decide to add parameter 'datasource's owner' to function above and controls it's lifetime this way.

Why is using procedures to create objects preferred over functions?

This is similar to this question. I asked "Why?" to the most popular response but I don't know that anyone would ever look at it again. At least not in any timely manner.
Anyway, my question is about best practices for delegating responsibility for creation of objects to functions or procedures, without causing memory leaks. It seems that this:
procedure FillObject(MyObject: TMyObject; SomeParam: Integer);
begin
//Database operations to fill object
end;
procedure CallUsingProcedure();
var
MyObject: TMyObject;
begin
MyObject = TMyObject.Create();
try
FillObject(MyObject, 1);
//use object
finally
MyObject.Free();
end;
end;
is preferred over this:
function CreateMyObject(DBID: Integer): TMyObject;
begin
Result := TMyObject.Create();
try
//Database operations to fill object
except on E: Exception do
begin
Result.Free();
raise;
end;
end;
end;
procedure CallUsingFunction();
var
MyObject: TMyObject;
begin
MyObject = CreateMyObject(1);
try
//use object
finally
MyObject.Free();
end;
end;
Why?
I'm relatively new to Delphi, having previously worked most with Java and PHP, as well as C++, though to a lesser extent. Intuitively, I lean toward the function method because:
It encapsulates the object creation code in the function, rather than create the object separately whenever I want to use the procedure.
I dislike methods that alter their parameters. It's often left undocumented and can make tracing bugs more difficult.
Vague, but admittedly it just "smells" bad to me.
I'm not saying I'm right. I just want to understand why the community chooses this method and if there is good reason for me to change.
Edit:
References to #E-Rock in comments are to me(Eric G). I changed my display name.
One problem is what Ken White wrote: you hand the user of the function an object he or she must free.
Another advantage of procedures is that you can pass several objects of a hierarchy, while a function that creates such an object always generates the same. E.g.
procedure PopulateStrings(Strings: TStrings);
To that procedure, you can pass any kind of TStrings, be it the Lines of a TMemo, the Items of a TListBox or TComboBox or a simple standalone TStringList. If you have a function:
function CreateStrings: TStrings;
You always get the same kind of object back (which object exactly is not known, as TStrings is abstract, so you probably get a TStringList), and must Assign() the contents to the TStrings you want to modify. The procedure is to be preferred, IMO.
Additionally, if you are the author of the function, you can't control whether the object you create is freed, or when. If you write a procedure, that problem is taken off your hands, since the user provides the object, and its lifetime is none of your concern. And you don't have to know the exact type of the object, it must just be of the class or a descendant of the parameter. IOW, it is also much better for the author of the function.
It is IMO seldom a good idea to return an object from a function, for all the reasons given. A procedure that only modifies the object has no dependency on the object and creates no dependency for the user.
FWIW, Another problem is if you do that from a DLL. The object returned uses the memory manager of the DLL, and also the VMT to which it points is in the DLL. That means that code that uses as or is in the user code does not work properly (since is and as use the VMT pointer to check for class identity). If the user must pass an object of his, to a procedure, that problem does not arise.
Update
As others commented, passing an object to a DLL is not a good idea either. Non-virtual functions will call the functions inside the DLL and use its memory manager, which can cause troubles too. And is and as will not work properly inside the DLL either. So simply don't pass objects into or out of a DLL. That goes with the maxime that DLLs should only use POD type parameters (or compound types -- arrays, records -- that only contain POD types) or COM interfaces. The COM interfaces should also only use the same kind of parameters.
Creating the object instance and passing it into another procedure makes it clear which code is responsible for freeing the instance.
In the first case (using a procedure to fill it):
MyObj := TMyObject.Create;
try
// Do whatever with MyObj
finally
MyObj.Free;
end;
This is clear that this block of code is responsible for freeing MyObj when it's finished being used.
MyObj := CreateMyObject(DBID);
What code is supposed to free it? When can you safely free it? Who is responsible for exception handling? How do you know (as a user of someone else's code)?
As a general rule, you should create, use, and free object instances where they're needed. This makes your code easier to maintain, and definitely makes it easier for someone who comes along later and has to try and figure it out. :)
I use a combination of both idioms. Pass the object as an optional parameter and if not passed, create the object. And in either case return the object as the function result.
This technique has (1) the flexibility of the creation of the object inside of the called function, and (2) the caller control of the caller passing the object as a parameter. Control in two meanings: control in the real type of the object being used, and control about the moment when to free the object.
This simple piece of code exemplifies this idiom.
function MakeList(aList:TStrings = nil):TStrings;
var s:TStrings;
begin
s:=aList;
if s=nil then
s:=TSTringList.Create;
s.Add('Adam');
s.Add('Eva');
result:=s;
end;
And here are three different ways to use it
simplest usage, for quick and dirty code
var sl1,sl2,sl3:TStrings;
sl1:=MakeList;
when programmer wants to make more explicit ownership and/or use a custom type
sl2:=MakeList(TMyStringsList.create);
when the object is previously created
sl3:=TMyStringList.Create;
....
MakeList(sl3);

"Object Aware" GUI Controls

I have some business objects written in Delphi with a custom scheme of database persistence which is finally working for my needs. Ok, great. Now it's time for GUI implementations. And here begins the problems.
How to bind my object to the GUI properly?
I cannot use Data Aware controls since I isolated all data access components into the ORM layer, so I start to write some "Object Aware" controls using the RTTI unit (I'm working with Delphi 2010), but I have the feeling I'm going the wrong way...
Some ideas on how to resolve this using only the VCL controls?
You have several patterns for linking ORM with User Interface.
See for instance the Model GUI Mediator pattern. In short, you write an observer which will reflect the ORM content into the UI components, and vice versa. This has been implemented for instance in the tiOpf framework for Delphi (this link has videos).
Another approach is to map your data at runtime: you design your form just like usual, then you fill the content in the OnShow event, then the "Save" or "OK" button will validate then save the content into the ORM record. This is what is done in the main Sample application of our framework. Easy to code in this simple sample, but could lead into spaghetti code if you have a lot of fields and validation to operate.
The last approach is to let your ORM creates the form.
In our framework, you can define some UI properties about each table, in a dedicated structure. Then a single unit will create a form with all editable fields of your ORM object. Links to other records will be displayed as a combo box, booleans as checkboxes, sets as radioboxes, and so on. Then the filtering (e.g. trim a text field from spaces on left or right side) and the validation (e.g. ensure that a field value is unique or a valid IP address) is handled not in the UI part, but in the business logic itself, i.e. the ORM.
IMHO it's mandatory to keep a true multi-tier architecture. That is, the UI has to rely mostly on the business logic. For instance, data validation must be part of the ORM, not of the UI. For instance, if you decide to add a web client to your Delphi client application, you won't have to code the validation another time: it will be common to both clients, separated from the UI implementation details.
What you could do (though I have no code samples) is use a combination of
class helpers or interceptor classes
binding interfaces for single domain objects and/or domain object lists
Class helpers have the disadvantage that they are not officially supported and you cannot add any fields to the class you are helping.
Interceptor classes are simply descendant classes with the same name as their ancestor:
uses
stdctrls;
type
TButton = class(stdctrls.TButton)
end;
You can put interceptor classes in their own unit and use that whereever you want. Just make sure these units are included AFTER the standard unit, so your descendant is used at run time.
Benefit of interceptor classes:
You can continue to design your UI using standard VCL or third party controls.
You get all the advantages of descendants.
You do not need to create or install your own controls.
No need for special mapper classes or use of RTTI.
Easily (well, relatively easily) integrated into a (DUnit-) testable user interface along the lines of Julian Bucknall's article on this in the (distinct) Delphi Magazine as referred to in this question/answer: Unit-testing mouse event handlers
Pseudo sample of interceptor control with binding interface / command interface:
uses
stdctrls;
type
ICommandAction = interface(IInterface)
function IsEnabled: Boolean;
procedure Execute;
procedure Update;
end;
IBindSingle = interface(IInterface)
function GetValueFromControl: string;
procedure LoadValueIntoControl(const aValue: string);
end;
TButton = class(stdctrls.TButton, ICommandAction)
protected
function IsEnabled: Boolean;
procedure Execute;
procedure Update;
end;
TEdit = class(stdctrls.TEdit, IBindSingle)
function GetValueFromControl: string;
procedure LoadValueIntoControl(const aValue: string);
end;
implementation could be along the lines of:
function TButton.IsEnabled: Boolean;
begin
Result := Self.Enabled;
end;
procedure TButton.Execute;
begin
Self.Action.Execute;
end;
procedure TButton.Update;
begin
Self.Action.Update;
end;
function TEdit.GetValueFromControl: string;
begin
Result := Self.Text;
end;
procedure LoadValueIntoControl(const aValue: string);
begin
Self.Text := aValue;
end;
My current customer have made their own "mapper" classes in the past (before I came).
Their data objects have fields (which are objects), and you can map these fields to a control. I extended the framework by using a MVC-like approach:
edtTarraCode: TAdvEdit;
procedure TframTarraTab.InitMapping;
begin
...
Mapper.AddMapping(edtTarraCode, Controller.DataModel.tarID);
...
end;
Per control a simple "mapping" class is created:
TMappingAdvEdit = class(TBaseEditMapping)
protected
procedure InitControl; override;
procedure AppData2Control; override;
procedure Control2AppData; override;
end;
No rocket sience, and maybe better solutions are available in the mean time (this worked in D6 and lower :-) ) but it works good enough for the customer.
Btw: also a data object generator is used. So if a field changes in the database (for example tarra.tarid is changed into tareID) we get a compiler error because "tarid" does not longer exist. This works much better than "fixed string" mapping (runtime errors).
There's currently no way to do this using only VCL controls. I know that Lazarus has a set of RTTI-based data-aware controls; you might want to look at them for some basic ideas. But it's more difficult than you might think at first. For example, unlike a dataset, an object has no built-in signaling mechanism when its members' values change. Which means that unless your data-binding controls own the object completely and nothing else has access to it, it's possible for some other code to change some value and then that change doesn't get reflected in the UI.
I've heard various things from the Delphi team in the last few years about extending the object model or the RTTI model to allow for better data binding, but whatever that's about is still a few years out.
Take a look at EverClassy Dataset at http://www.inovativa.com.br. It may meet your needs. EverClassy Dataset is a Delphi dataset designed to be populated by objects instead records from a database system.
With this component you will have the chance to interoperate your domain objects with dataware componentes, what will give you great power to build your GUI.

Which Delphi data structure can hold a list of unique integers?

When I approach Java problems, I use the collection pattern. However, doing it in Delphi is quite a nightmare since there is no Integer object to handle things.
I need a data structure that holds numbers. I want to be able to add numbers, remove numbers, and check the contents of the collection, and each number must be unique.
I'm not interested in a solution I need to implement and test for bugs myself. Is there a ready object like Java's HashTable?
uses GpLists;
var
numberList: TGpIntegerList;
begin
numberList := TGpIntegerList.Create;
numberList.Duplicates := dupIgnore;
numberList.Sorted := true;
numberList.add(1);
numberList.add(2);
numberList.add(3);
numberList.add(1);
GpLists comes with a BSD license. It also contains a class holding 64-bit integers - TGpInt64List - and bunch of other stuff.
Dictionary<Integer,Boolean> or similar would do.
I know it's dirty, but you could misuse TStringList (or THashedStringList).
var
numberList: TStringList;
begin
numberList := TStringList.Create;
numberList.Duplicates := dupIgnore;
numberList.Sorted := true;
numberList.add(IntToStr(1));
numberList.add(IntToStr(2));
numberList.add(IntToStr(3));
numberList.add(IntToStr(1));
// numberList.CommaText = '1,2,3'
This is a simple solution for the Delphi version with generics:
TUniqueList<T> = class(TList<T>)
public
function Add(const Value: T): Integer;
end;
{ TUniqueList<T> }
function TUniqueList<T>.Add(const Value: T): Integer;
begin
if not Contains(Value) then
Result := inherited Add(Value);
end;
And if performance with lots of integers is important then you can keep the list sorted and use the binary serch
Delphi containers class in the "standard" VCL library are poor. This is a long standing issue only partially corrected in latest versions.
If you are using Delphi >= 2009 you have generics class that can handle integer data types as well, before you have to write your own class, use TList in a non standard way, or use a third party library.
If you have to store numbers, if they are at most 32 bit long you can store them in a TList, casting them to and from pointers. You have to override the Add() method to ensure uniqueness. You could also use TBits and set to true the corresponding "slot".
Otherwise you need to use third party libraries like the JCL (free) or DIContainers (commercial), for example.
You can use a TList to store a set of integers. It is supposed to store Pointers, but since Pointers are just integers it works perfectly when storing Integers.
Delphi has unit mxarrays (Decision Cube), there is a class TIntArray, set it's property Duplicates to dupIgnore. It's also can sort values. If you will use it, see Quality Central Report #:2703 to correct the bug in this unit.
Personally, i strongly recommend start using DeCAL for storing data. It has DMap container which can handle almost any data type, is self optimized because it uses internal Red-Black tree and it won't allow you to add duplicates (if you need to insert duplicates, you can use DMultiMap). Another great thing with DMap is that finding element in the list is very fast (much faster than in TStringList). Working with DeCal is a bit different than with other Delphi libraries but once you get comfortable with it, you won't use any StringList in your code.
Edit: older version of DeCAL is on SourceForge, but here you can find great pdf manual.
Yes, there is, it's called TDictionary

Resources