OpenCV: what is the difference between these 2 haar cascade data sets? - opencv

I have seen there are 2 different Haar Cascade datasets in OpenCV. For an example, take a look at haarcascade_upperbody.xml and haarcascade_mcs_upperbody.xml. what is this new mcs thing? The only difference I can monitor is that haarcascade_mcs_upperbody.xml is providing a way better results than the other one.
So, can someone please explain me the difference between these 2 types? When training my own datasets, how can I select between these 2?

I think this web site have the answer : OpenCV
The diference is eepending on there train data, so that, if you want to select a suit classifier, I prefer you try both two to find a better result.

Related

Clustering or other mechanisms for implementing generic spam detection

In normal case I had tried out naive bayes and linear SVM earlier to classify data related to certain specific type of comments related to some page where I had access to training data manually labelled and classified as spam or ham.
Now I am being told to check if there are any ways to classify comments as spam where we don't have a training data. Something like getting two clusters for data which will be marked as spam or ham given any data.
I need to know certain ways to approach this problem and what would be a good way to implement this.
I am still learning and experimenting . Any help will be appreciated
Are the new comments very different from the old comments in terms of vocabulary? Because words is almost everything the classifiers for this task look at.
You always can try using your old training data and apply the classifier to the new domain. You would have to label a few examples from your new domain in order to measure performance (or better, let others do the labeling in order to get more reliable results).
If this doesn't work well, you could try domain adaptation or look for some datasets more similar to your new domain, using Google or looking at this spam/ham corpora.
Finally, there may be some regularity or pattern in your new setting, e.g. downvotes for a comment, which may indicate spam/ham. In such cases, you could compile training data yourself. This would them be called distant supervision (you can search for papers using this keyword).
The best I could get to was this research work which mentions about active learning. So what I came up with is that I first performed Kmeans clustering and got the central clusters (assuming 5 clusters I took 3 clusters descending ordered by length) and took 1000 msgs from each. Then I would assign it to be labelled by the user. The next process would be training using logistic regression on the labelled data and getting the probabilities of unlabelled data and then if I have probability close to 0.5 or in range of 0.4 to 0.6 which means it is uncertain I would assign it to be labelled and then the process would continue.

How to choose classifier on specific dataset

When given the dataset, normally m instances by n features matrix, how to choose the classifier that is most appropriate for the dataset.
This is just like what algorithm to solve a prime Number. Not every algorithm solve any problem means each problem assigned which finite no. of algorithm. In machine learning you can apply different algorithm on a type of problem.
If matrix contain real numbered features then you can use KNN algorithm can be used. Or if matrix have words as feature then you can use naive bayes classifier which is one of best for text classification. And Machine learning have tons of algorithm you can read them apply to your problem which fits best. Hope you understand what I said.
An interesting but much more general map I found:
http://scikit-learn.org/stable/tutorial/machine_learning_map/
If you have weka, you can use experimenter and choose different algorithms on same data set to evaluate different models.
This project compares many different classifiers on different typical datasets.
If you have no idea, you could use this simple tool auto-weka which will test all the different classifiers you selected within different constraints. Before using auto-weka, you may need to convert your data to ARFF using Weka or just manually (many tutorial on youtube).
The best classifier depends on your data (binary/string/real/tags, patterns, distribution...), what kind of output to predict (binary class / multi-class / evolving classes / a value from regression ?) and the expected performance (time, memory, accuracy). It would also depend on whether you want to update your model frequently or not (ie. if it is a stream, better use an online classifier).
Please note that the best classifier may not be one but an ensemble of different classifiers.

Simple statistical yes/no classifier in WEKA

In order for me to compare my results of my research in labeled text classification, I need to have a baseline to compare with. One of my colleagues told me one solution would be to make the most easiest and dumbest classifier possible. The classifier makes a decision based on the frequency of a particular label.
This means that, when in my dataset I have a total of 100 samples and when it knows 80% of these samples have the label A, it will classify a sample as 'A' in 80% of the time. Since my entire research is using the Weka API, I have looked into the documentation but unfortunatly haven't found anything about this.
So my question is, is it possible in Weka to implement such a classifier and yes, could someone point out how this is possible? This question is pure informative since I looked into this thing but did not find anything, here is where I hope to find an answer.
That classifier is already implemented in Weka, it is called ZeroR and simply predicts the most frequent class (in the case of nominal class attributes) or the mean (in the case of numeric class attributes). If you want to know how to implement such a classifier yourself, look at the ZeroR source code.

Optimal classification

I'm trying to get good accuracy using WEKA and its classification options.
by using this method I can not cover all options and this is why I'm afraid I could miss the optimal classification to get the best J48 tree solution.
I have tried using number of classifications and methods such as (NB, costSensitive, attributeClassifier, etc..) and each of this have at least few options..
My question is:
is there any option to let the software (WEKA or other software) to run (even days!!) in order to find the best classification for optimal solution?
If to be more specific, could I determine the confusion matrix I would like to have and the software will tell me which classification or options to use?
You should run your classifier with different parameters and check classifier performance for each parameter set. Here you have reference for WEKA class for doing this.

How to approach machine learning problems with high dimensional input space?

How should I approach a situtation when I try to apply some ML algorithm (classification, to be more specific, SVM in particular) over some high dimensional input, and the results I get are not quite satisfactory?
1, 2 or 3 dimensional data can be visualized, along with the algorithm's results, so you can get the hang of what's going on, and have some idea how to aproach the problem. Once the data is over 3 dimensions, other than intuitively playing around with the parameters I am not really sure how to attack it?
What do you do to the data? My answer: nothing. SVMs are designed to handle high-dimensional data. I'm working on a research problem right now that involves supervised classification using SVMs. Along with finding sources on the Internet, I did my own experiments on the impact of dimensionality reduction prior to classification. Preprocessing the features using PCA/LDA did not significantly increase classification accuracy of the SVM.
To me, this totally makes sense from the way SVMs work. Let x be an m-dimensional feature vector. Let y = Ax where y is in R^n and x is in R^m for n < m, i.e., y is x projected onto a space of lower dimension. If the classes Y1 and Y2 are linearly separable in R^n, then the corresponding classes X1 and X2 are linearly separable in R^m. Therefore, the original subspaces should be "at least" as separable as their projections onto lower dimensions, i.e., PCA should not help, in theory.
Here is one discussion that debates the use of PCA before SVM: link
What you can do is change your SVM parameters. For example, with libsvm link, the parameters C and gamma are crucially important to classification success. The libsvm faq, particularly this entry link, contains more helpful tips. Among them:
Scale your features before classification.
Try to obtain balanced classes. If impossible, then penalize one class more than the other. See more references on SVM imbalance.
Check the SVM parameters. Try many combinations to arrive at the best one.
Use the RBF kernel first. It almost always works best (computationally speaking).
Almost forgot... before testing, cross validate!
EDIT: Let me just add this "data point." I recently did another large-scale experiment using the SVM with PCA preprocessing on four exclusive data sets. PCA did not improve the classification results for any choice of reduced dimensionality. The original data with simple diagonal scaling (for each feature, subtract mean and divide by standard deviation) performed better. I'm not making any broad conclusion -- just sharing this one experiment. Maybe on different data, PCA can help.
Some suggestions:
Project data (just for visualization) to a lower-dimensional space (using PCA or MDS or whatever makes sense for your data)
Try to understand why learning fails. Do you think it overfits? Do you think you have enough data? Is it possible there isn't enough information in your features to solve the task you are trying to solve? There are ways to answer each of these questions without visualizing the data.
Also, if you tell us what the task is and what your SVM output is, there may be more specific suggestions people could make.
You can try reducing the dimensionality of the problem by PCA or the similar technique. Beware that PCA has two important points. (1) It assumes that the data it is applied to is normally distributed and (2) the resulting data looses its natural meaning (resulting in a blackbox). If you can live with that, try it.
Another option is to try several parameter selection algorithms. Since SVM's were already mentioned here, you might try the approach of Chang and Li (Feature Ranking Using Linear SVM) in which they used linear SVM to pre-select "interesting features" and then used RBF - based SVM on the selected features. If you are familiar with Orange, a python data mining library, you will be able to code this method in less than an hour. Note that this is a greedy approach which, due to its "greediness" might fail in cases where the input variables are highly correlated. In that case, and if you cannot solve this problem with PCA (see above), you might want to go to heuristic methods, which try to select best possible combinations of predictors. The main pitfall of this kind of approaches is the high potential of overfitting. Make sure you have a bunch "virgin" data that was not seen during the entire process of model building. Test your model on that data only once, after you are sure that the model is ready. If you fail, don't use this data once more to validate another model, you will have to find a new data set. Otherwise you won't be sure that you didn't overfit once more.
List of selected papers on parameter selection:
Feature selection for high-dimensional genomic microarray data
Oh, and one more thing about SVM. SVM is a black box. You better figure out what is the mechanism that generate the data and model the mechanism and not the data. On the other hand, if this would be possible, most probably you wouldn't be here asking this question (and I wouldn't be so bitter about overfitting).
List of selected papers on parameter selection
Feature selection for high-dimensional genomic microarray data
Wrappers for feature subset selection
Parameter selection in particle swarm optimization
I worked in the laboratory that developed this Stochastic method to determine, in silico, the drug like character of molecules
I would approach the problem as follows:
What do you mean by "the results I get are not quite satisfactory"?
If the classification rate on the training data is unsatisfactory, it implies that either
You have outliers in your training data (data that is misclassified). In this case you can try algorithms such as RANSAC to deal with it.
Your model(SVM in this case) is not well suited for this problem. This can be diagnozed by trying other models (adaboost etc.) or adding more parameters to your current model.
The representation of the data is not well suited for your classification task. In this case preprocessing the data with feature selection or dimensionality reduction techniques would help
If the classification rate on the test data is unsatisfactory, it implies that your model overfits the data:
Either your model is too complex(too many parameters) and it needs to be constrained further,
Or you trained it on a training set which is too small and you need more data
Of course it may be a mixture of the above elements. These are all "blind" methods to attack the problem. In order to gain more insight into the problem you may use visualization methods by projecting the data into lower dimensions or look for models which are suited better to the problem domain as you understand it (for example if you know the data is normally distributed you can use GMMs to model the data ...)
If I'm not wrong, you are trying to see which parameters to the SVM gives you the best result. Your problem is model/curve fitting.
I worked on a similar problem couple of years ago. There are tons of libraries and algos to do the same. I used Newton-Raphson's algorithm and a variation of genetic algorithm to fit the curve.
Generate/guess/get the result you are hoping for, through real world experiment (or if you are doing simple classification, just do it yourself). Compare this with the output of your SVM. The algos I mentioned earlier reiterates this process till the result of your model(SVM in this case) somewhat matches the expected values (note that this process would take some time based your problem/data size.. it took about 2 months for me on a 140 node beowulf cluster).
If you choose to go with Newton-Raphson's, this might be a good place to start.

Resources