Finding transformation between two frames - opencv

I have two consecutive frames from a video feed and I detect the keypoints using the FAST algorithm for both of them. I match the keypoints using the sum of squared difference's method (SSD).
So basically I have matched keypoints between the two frames. Now I want to calculate the affine transformation (scale + rotation + translation ) between the two frames from the set of matched keypoints.
I know how to calculate affine transformation from a pair of two points.
My question is how can we calculate it for more than two or three points? I know I have to use least median square method but I'm new to this field so I don't know how to use it.
Can someone please explain this in detail or provide a useful link that does this in a simple way?

You could use function findHomography, doc for that purpose.
If all the point matches you are providing are good matches, you can keep the default value for parameter method (i.e. value 0). The least square method will then be used.
However, if you obtained the point matches from SSD keypoint matches, you will likely have some wrong matches among the true matches. Hence, you will obtain better results using a robust method such as RANSAC or Least Medians.
Note that this findHomography function returns a perspective transform (i.e. full 3x3 matrix). If you really want an affine transform (2x3 matrix), you will have to implement the least squares (have a look at this post) or RANSAC (see this post) yourself.

Related

Detecting a pattern of dark/bright bands in an image

I'm trying to detect a pattern like this in some images
The actual image looks something like this
It could be scaled and/or rotated. Is there a way to do that efficiently without resorting to neural nets or some learning algorithm? Can some detection be done based on the value gradient for example (dark-bright-dark-bright-dark)?
input image is MxN (in your example M<N ):
take mean RGB image
mean Y to get 1xN vector
derive
abs
threshold
calculate the distance between peaks.
search for a location where the ratio between the distances is as expected (from what i see in your example ~ 1:7:1)
if a place found, validate the colors in the middle of the distance (from your example should be white-black-white)
You might be able to use Gabor Filters at varying orientations, and do standard threshold to identify objects.
If you know the frequency of the pattern you could try using a bandpass filter to isolate objects at that frequency. If it is a very strong frequency, you might be able to identify it in the image's Fourier transform.
Without much other knowledge about what you are looking for in your image, it will be very difficult to identify a specific repeating pattern.

How to improve the homography accuracy?

I used OpenCV's cv::findHomography API to calculate the homography matrix of two planar images.
The matched key points are extracted by SIFT and matched by BFMatcher. As I know, cv:findHomography use RANSAC iteration to find out the best four corresponding points to get the homography matrix.
So I draw the selected four pairs of points with the calculated contour using homograhy matrix of the edge of the object.
The result are as the links:
https://postimg.cc/image/5igwvfrx9/
As we can see, the selected matched points by RANSAC are correct, but the contour shows that the homography is not accurate.
But these test shows that, both the selected matched points and the homography are correct:
https://postimg.cc/image/dvjnvtm53/
My guess is that if the selected matched points are too close, the small error of the pixel position will lead to the significant error of the homography matrix. If the four points are in the corner of the image, then the shift of the matched points by 4-6 pixels still got good homography matrix.
(According the homogenous coordinate, I think it is reasonable, as the small error in the near plane will be amplified in the far away)
My question is:
1.Is my guess right?
2.Since the four matched points are generated by the RANSAC iteration, the overall error of all the keypoints are minimal. But How to get the stable homography, at least making the contour's mapping is correct? The theory proved that if the four corresponding points in a plane are found, the homography matrix should be calculated, but is there any trick in the engineer work?
I think you're right, and the proximity of the 4 points does not help the accuracy of the result. What you observe is maybe induced by numerical issues: the result may be locally correct for these 4 points but becomes worse when going further.
However, RANSAC will not help you here. The reason is simple: RANSAC is a robust estimation procedure that was designed to find the best point pairs among many correspondences (including some wrong ones). Then, in the inner loop of the RANSAC, a standard homography estimation is performed.
You can see RANSAC as a way to reject wrong point correspondences that would provoke a bad result.
Back to your problem:
What you really need is to have more points. In your examples, you use only 4 point correspondences, which is just enough to estimate an homography.
You will improve your result by providing more matches all over the target image. The problem then becomes over-determined, but a least squares solution can still be found by OpenCV. Furthermore, of there is some error either in the point correspondence process or in some point localization, RANSAC will be able to select the best ones and still give you a reliable result.
If RANSAC results in overfitting on some 4 points (as it seems to be the case in your example), try to relax the constraint by increasing the ransacReprojThreshold parameter.
Alternatively, you can either:
use a different estimator (the robust median CV_LMEDS is a good choice if there are few matching errors)
or use RANSAC in a first step with a large reprojection error (to get a rough estimate) in order to detect the spurious matchings then use LMEDS on the correct ones.
Just to extend #sansuiso's answer, with which I agree:
If you provide around 100 correspondences to RANSAC, probably you are getting more than 4 inliers from cvFindHomography. Check the status output parameter.
To obtain a good homography, you should have many more than 4 correspondences (note that 4 correspondences gives you an homography always), which are well distributed around the image and which are not linear. You can actually use a minimum number of inliers to decide whether the homography obtained is good enough.
Note that RANSAC finds a set of points that are consistent, but the way it has to say that that set is the best one (the reprojection error) is a bit limited. There is a RANSAC-like method, called MSAC, that uses a slightly different error measurement, check it out.
The bad news, in my experience, is that it is little likely to obtain a 100% precision homography most of the times. If you have several similar frames, it is possible that you see that homography changes a little between them.
There are tricks to improve this. For example, after obtaining a homography with RANSAC, you can use it to project your model into the image, and look for new correspondences, so you can find another homography that should be more accurate.
Your target has a lot of symmetric and similar elements. As other people mentioned (and you clarified later) the point spacing and point number can be a problem. Another problem is that SIFT is not designed to deal with significant perspective distortions that are present in your case. Try to track your object through smaller rotations and as was mentioned reproject it using the latest homography to make it look as close as possible to the original. This will also allow you to skip processing heavy SIFT and to use something as lightweight as FAST with cross correlation of image patches for matching.
You also may eventually come to understanding that using points is not enough. You have to use all that you got and this means lines or conics. If a homography transforms a point Pb = H* Pa it is easy to verify that in homogeneous coordinates line Lb = Henv.transposed * La. this directly follows from the equation La’.Pa = 0 = La’ * Hinv * H * Pa = La’ * Hinv * Pb = Lb’.Pb
The possible min. configurations is 1 line and three points or three lines and one point. Two lines and two points doesn’t work. You can use four lines or four points as well. Of course this means that you cannot use the openCV function anymore and has to write your own DLT and then non-linear optimization.

obtaining 2d-3d point correspondences for pnp or posit

I am trying to estimate the pose and position of a satellite given an image of it. I have a 3D model of the satellite. Using either PnP solvers or POSIT works great when I pick out the point correspondences myself, however I need to to find a method to match the points up automatically. Using a corner detector (best one I found so far is based on the contour) I can find all the relevant points in the image in addition a few spurious points. However I need to match a given point in the image to the correct point in the 3D model. The articles I have read on the subject always seem to assume that we have found the point pairs without going into details about how to do so.
Is there any approach usually taken that can determine these correspondences based on some invariant features? Or should i resort to a different method not based on corner points?
You can have a look at the SoftPOSIT algorithm, which determines 3D-2D correspondences and then executes POSIT algorithm. As far as I know Matlab code is available for SoftPOSIT.
ou have to do PnP with RANSAC, see openCV code solvePnPRansac(). This method can tolerate a high percent of mismatches so you don't need to be precise with all your matches but just have a certain percent of correct ones (even as low as 30%). Of course the min number of right correspondences is 4.
Speaking of invariant features - if the amount of rotation between neighbouring frame is small you don't need to use invariant features. Even a small patch of with grey intensities would suffice to find a match. The only problem is that you have to update your descriptor or even choose a different feature point on your model depending on the model rotation. The latter may be hard to do since you have to know 3D coordinate of every feature.

calculating the destination points for OpenCV's findHomography

EDIT: I've now found this similar question with a very detailed answer:
proportions of a perspective-deformed rectangle
I'm using OpenCV's findHomography() and warpPerspective() methods to "de skew" a photograph of a sheet of paper. I have this largely working but I'm stuck on a detail.
The part I don't understand how to do is to calculate the optimum set of destination points to input to findHomography(). I know that I want my output to be rectangular, but I dont know the ratio of the width to height of the rectangle. I also want the output rectangle to be sized such that there is minimal scaling of the output image when I apply the transform via warpPerspective(). All I have are the four points that form the quadrilateral I want to transform in the source image. How do I calculate an optimum-sized destination rectangle?
The findHomography() method will need four points (if using Direct Linear Transform). If you want the optimal set you will need the 4-point set which DLT's homography gives the minimum reprojection error. I mean, you need a method that detects inliers/outliers for the particular mathematical model od the DLT.
THis method is RANSAC, and OpenCV has it implemented. You will find examples of findhomography() combined with RANSAC.
I personally find one problem with this and it is the number of iterations of RANSAC in OpenCV, which is too high. If you are looking for optimal speed you will have to dig into the codes.

Detecting garbage homographies from findHomography in OpenCV?

I'm using findHomography on a list of points and sending the result to warpPerspective.
The problem is that sometimes the result is complete garbage and the resulting image is represented by weird gray rectangles.
How can I detect when findHomography sends me bad results?
There are several sanity tests you can perform on the output. On top of my head:
Compute the determinant of the homography, and see if it's too close to zero for comfort.
Even better, compute its SVD, and verify that the ratio of the first-to-last singular
value is sane (not too high). Either result will tell you whether the matrix is close to
singular.
Compute the images of the image corners and of its center (i.e. the points you get when
you apply the homography to those corners and center), and verify that they make sense,
i.e. are they inside the image canvas (if you expect them to be)? Are they well separated
from each other?
Plot in matlab/octave the output (data) points you fitted the homography to, along
with their computed values from the input ones, using the homography, and verify that they
are close (i.e. the error is low).
A common mistake that leads to garbage results is incorrect ordering of the lists of input and output points, that leads the fitting routine to work using wrong correspondences. Check that your indices are correct.
Understanding the degenerate homography cases is the key. You cannot get a good homography if your points are collinear or close to collinear, for example. Also, huge gray squares may indicate extreme scaling. Both cases may arise from the fact that there are very few inliers in your final homography calculation or the mapping is wrong.
To ensure that this never happens:
1. Make sure that points are well spread in both images.
2. Make sure that there are at least 10-30 correspondences (4 is enough if noise is small).
3. Make sure that points are correctly matched and the transformation is a homography.
To find bad homographies apply found H to your original points and see the separation from your expected points that is |x2-H*x1| < Tdist, where Tdist is your threshold for distance error. If there are only few points that satisfy this threshold your homography may be bad and you probably violated one of the above mentioned requirements.
But this depends on the point-correspondences you use to compute the homography...
Just think that you are trying to find a transformation that maps lines to lines (from one plane to another), so not any possible configuration of point-correspondences will give you an homography that creates nice images.
It is even possible that the homography maps some of the points to the infinity.

Resources