I want to create a model for flower segmentation. I want to train model with many images. I want to use GrabCut in opencv. I have read this link. but this only uses one image for segmentation. how can I use GrabCut for the above mentioned purpose?
here is some sample from flower's pictures:
If all the images are like the ones shown, and you are set on using grabcut, then you can cheat by setting a mask to the central pixels and then using grabcut with the mask option.
If all the images are like the ones shown, and you are not set on using grabcut, then maybe try salient segmentation, it seems to like flowers.
http://mmcheng.net/salobj/
If you want a general "model" that can segment flowers that is much more difficult. Perhaps check my other post https://stackoverflow.com/a/24624938/3669776 for some bedtime reading :)
Related
I have a collection of face images, with 1 or sometimes 2 faces in each image. What I wanna do, is find the face in each image and then crop It.
I've tested a couple of methods, which are implemented in python using openCV, but the results weren't that good. These methods are:
1- Implementation 1
2- Implementation 2
There's one more model that I've tested, but I'm not allowed to post more than two links.
The problem is that these Haar-Feature based algorithms, are not robust to face size, and when I tried them on images which were taken close to the face, they couldn't find any faces.
Someone mentioned to try deep learning based algorithms, but I couldn't find one corresponding to what I want to do. Basically, I guess I need a pre-trained model, which can give me the coordinates of the face bounding box in the image, or better, a pre-trained model which gives out the cropped face image as output.
You don't need machine learning algorithms, Graph-Algorithms is enough. For example Snapchats face recognition algorithm works as follows:
Create a Graph with Nodes and Edges from a most common Face ("Standard Face").
Deform that Graph / Recoordinate the Nodes to the fitted pixels in the Input Image
voila you got the face recognized in the Input Image.
Easy said, but harder to code. We implemented in our university the Dijkstra Algorithm for example and I can hand you my "Graph" Class if you need it. But I wrote it in C++.
With these graph-algorithm you can crop out the faces more efficient.
I am interested in the possibility of training a TensorFlow model to modify images, but I'm not quite sure where to get started. Almost all of the examples/tutorials dealing with images are for image classification, but I think I am looking for something a little different.
Image classification training data typically includes the images plus a corresponding set of classification labels, but I am thinking of a case of an image plus a "to-be" version of the image as the "label". Is this possible? Is it really just a classification problem in disguise?
Any help on where to get started would be appreciated. Also, the solution does not have to use TensorFlow, so any suggestions on alternate machine learning libraries would also be appreciated.
For example, lets say we want to train TensorFlow to draw circles around objects in a picture.
Example Inbound Image:
(source: pbrd.co)
Label/Expected Output:
(source: pbrd.co)
How could I accomplish that?
I can second that, its really hard to find information about Image modification with tensorflow :( But have a look here: https://affinelayer.com/pix2pix/
From my understanding, you do use a GAN, but insead of feeding the Input of the generator with random data during training, you use a sample Input.
Two popular ways (the ones that I know about) to make models generate/edit images are:
Deep Convolutional Generative Adversarial Networks
Back-Propagation through a pre-trained image classification model (in a similar manner to deep dream) but you can start from the final layer to feed back the wanted label and the gradient descent should be applied to the image only. This was explained in more details in the following course: CS231n (this lecture)
But I don't think they fit the circle around "3" example that you gave. I think object detection and instance segmentation would be more helpful. Detect the object you are looking for, extract its boundaries via segmentation and post-process it to make the circle that you wish for (or any other shape).
Reference for the images: Intro to Deep Learning for Computer Vision
I have 10,000 examples 20x20 png image (binary image) about triangle. My mission is build program, which predict new image is whether triangle. I think I should convert these image to 400 features example, but I don't know how convert fastest.
Can you show me the way?
Here are a image .
Your question is too broad as you dont specify which technologies you are using , but in general you need to create a vector from an array , that depends on your tools , for example if you use python(and the numpy library) you could use flatten().
image_array.flatten();
If you want to do it manually you just need to move every row to a single row.
The previous answer is correct. Yet I want to add something to it:
The example image that you provided is noisy. This is rather problematic as you are working with only binary images. Therefore I want to suggest preprocessing, such as gaussian filter or edge detection. Denoising will improve your clustering algorithms accuracy stronlgy (to my knowledge).
One important question:
What are the other pictures showing? Do you have to seperate triangles from circles? You will get much better answers if you provide more information.
Anyhow, my key message is: Preprocessing is vital for image-processing.
I'm working on a project to do a segmentation of tissu. So far i so good for now. But her i want to segment the destructed from the good tissu. Her is an image example. So as you can see the good tissus are smooth and the destructed ones are not. I have the idea to detected the edges to do the segmentation but it give bad results.
I'm opening to any i'm open to any suggestions.
Use a convolutional neural network for example any prebuilt in the Caffe package. Label the different kinds of areas in as many images as you have, then use many (1000s) small (32x32) patches from those to train the network. This will produce much better results than any kind of handcrafted algorithm.
A very simple approach which can be used as an intermediate test could be following:
Blur the image to reduce the noise. This is an important step. OpenCV provides an inbuilt method for it.
Find contours using the OpenCV method findContour().
Then if the perimeter of contour is greater than a set threshold (you will have to set a value) then, you can consider it to be a smooth tissue else you can discard the tissue.
This is a really simple approach and a simple program can be written for it really fast.
I don't think I'm going to get any replies but here goes: I'm developing an iOS app that performs image segmentation functions. I'm trying to implement the easiest way to crop out a subject from an image without the need of a greenscreen/keying. Most automated solutions like using OpenCV just aren't cutting it.
I've found the rotoscope brush tool in After Effects to be effective at giving hints on where the app should be cutting out. Anyone know what kind of algorithms the rotoscope brush tool is using?
Check out this page, which contains a couple of video presentations from SIGGRAPH (a computer graphics conference) about the Roto Brush tool. Also take a look at Jue Wang's paper on Video SnapCut. As Damien guessed, object extraction relies on some pretty intense image processing algorithms. You might be able to implement something similar in OpenCV depending on how clever/masochistic you're feeling.
The algorithm is a graph-cut based segmentation algorithm where Gaussian Mixture Models (GMM) are trained using color pixels in "local" regions as well as "globally", together with some sort of shape prior.
OpenCV has a "cheap hack" implementation of the "GrabCut" paper where the user specifies a bounding box around the object he wish to segment. Typically, using just the bounding box will not give good results. You will need the user to specify the "foreground" and "background" pixels (as is done in Adobe's Rotoscoping tool) to help the algorithm build foreground and background color models (in this case GMMs) so that it will know what are the typical colors in the foreground object you wish to segment, and those for the background that you want to leave out.
A basic graph-cut implementation can be found on this blog. You can probably start from there and experiment with different ways to compute the cost terms to get better results.
Lastly, the "soften" the edges, a cheap hack is to blur the binary mask to obtain a mask with values between 0 and 1. Then recomposite your image using the mask i.e. c[i][j] = mask[i][j] * fgd[i][j] + (1 - mask[i][j]) * bgd[i][j], where you are blending the foreground you segmented (fgd), with a new background image (bgd) using the mask values as blending weights.