Non-ARC to ARC: Pointer to a pointer to an object (**) - ios

I am trying to convert an iOS project into ARC.
I am using the compiler flag for some of the files.
But one of the files contains a variable declared within a method like the following:
aClass **obj;
With ARC turned off, it gives an error:
"pointer to non-const type without explicit ownership"
I could silence the warning by doing this:
aClass *__strong* obj;
Which I believe is not a good practice as far as ownership is concerned.
But the error didn't exist in non-ARC environment.
My question is simply as follows:
How would I change from non-ARC to ARC setup the declaration of the object without having to use *__strong*?
i.e., how could I declare (or make changes to declaring) aClass **obj under ARC without have to use *__strong*, which I am sure I have read somewhere it is not a good practice to do but I forgot where I read it.
And:
Why didn't it give error under non-ARC environment.

TL;DR: You probably don't want a pointer to a pointer unless you can avoid it. It's pretty poor design to do so under a system where memory is managed for you. This answer explains more: Pointer to a pointer in objective-c?.
More Details
Under non-ARC, the system leaves retain/release up to you so it doesn't matter who owns a pointer. You, the programmer, owns it. In ARC land, the system needs to know when to retain or release, and it can't always infer which class/object has ownership over a particular object. Other classes may need the reference but the class that declared it is done with the object already. Basically, the __strong tells the declaring class that it should be in charge of managing the pointer. It 'overrides' the ownership of the pointer in a way. So that's a way to get around it. The best way to get around it would be to refactor the code to not use explicitly managed memory, but how you've fixed it will work if that's not possible/too hard.

Related

obejective c - Portential leak of an object stored into

I am trying to Run the code but its reporting the memory leaks when using static analyzer. on this line as Potential leak of an object stored into 'encodedData'
return encodedData;
use __bridge_transfer
Using __bridge_transfer ensures that ARC will release the object for you. Without __bridge_transfer, you must release the returned object manually.
__bridge,__bridge_transfer keywords are used to tell to ARC system how to handle your non-objective-c pointers. In essence, if you use __bridge, you are telling to ARC not to deal with the ownership of the converted pointer because you will free it from non-objective-c code, most likely with a free() or a CFRelease... type function. __bridge_transfer, on the other hand, transfers the ownership to ARC and ARC will free your objective-c (and thus also the original non-objective-c) object via the standard release mechanism when the references to that object hits zero.
Reference
The problem is that you create your string using CoreFoundation methods. And by default ARC doesn't know what to do with it. So, you're responsible for either manually managing the memory for the created object (using CFRelease for example), or handing it over to ARC.
The later is, I believe, the way to go in your case. You can do it, as others have already noted, using __bridge_transfer.

Understand one edge case of block memory management in objc

the code below will crash because of EXC_BAD_ACCESS
typedef void(^myBlock)(void);
- (void)viewDidLoad {
[super viewDidLoad];
NSArray *tmp = [self getBlockArray];
myBlock block = tmp[0];
block();
}
- (id)getBlockArray {
int val = 10;
//crash version
return [[NSArray alloc] initWithObjects:
^{NSLog(#"blk0:%d", val);},
^{NSLog(#"blk1:%d", val);}, nil];
//won't crash version
// return #[^{NSLog(#"block0: %d", val);}, ^{NSLog(#"block1: %d", val);}];
}
the code runs in iOS 9 with ARC enabled. And I was trying to figure out the reason that lead to crash.
by po tmp in lldb I found
(lldb) po tmp
<__NSArrayI 0x7fa0f1546330>(
<__NSMallocBlock__: 0x7fa0f15a0fd0>,
<__NSStackBlock__: 0x7fff524e2b60>
)
whereas in the won't crash version
(lldb) po tmp
<__NSArrayI 0x7f9db481e6a0>(
<__NSMallocBlock__: 0x7f9db27e09a0>,
<__NSMallocBlock__: 0x7f9db2718f50>
)
So the most possible reason I could come up with is when ARC release the NSStackBlock the crash happen. But why would so?
First, you need to understand that if you want to store a block past the scope where it's declared, you need to copy it and store the copy instead.
The reason for this because of an optimization where blocks which capture variables are initially located on the stack, rather than dynamically allocated like a regular object. (Let's ignore blocks which don't capture variables for the moment, since they can be implemented as a global instance.) So when you write a block literal, like foo = ^{ ...};, that's effectively like assigning to foo a pointer to a hidden local variable declared in that same scope, something like some_block_object_t hiddenVariable; foo = &hiddenVariable; This optimization reduces the number of object allocations in the many cases where a block is used synchronously and never outlives the scope where it was created.
Like a pointer to a local variable, if you bring the pointer outside the scope of the thing it pointed to, you have a dangling pointer, and dereferencing it leads to undefined behavior. Performing a copy on a block moves a stack to the heap if necessary, where it is memory-managed like all other Objective-C objects, and returns a pointer to the heap copy (and if the block is already a heap block or global block, it simply returns the same pointer).
Whether the particular compiler uses this optimization or not in a particular circumstance is an implementation detail, but you cannot assume anything about how it's implemented, so you must always copy if you store a block pointer in a place that will outlive the current scope (e.g. in a instance or global variable, or in a data structure that may outlive the scope). Even if you knew how it was implemented, and know that in a particular case copying is not necessary (e.g. it is a block that doesn't capture variables, or copying must already have been done), you should not rely on that, and you should still always copy when you store it in a place that will outlive the current scope, as good practice.
Passing a block as an argument to a function or method is somewhat complicated. If you pass a block pointer as an argument to a function parameter whose declared compile-time type is a block-pointer type, then that function would in turn be responsible for copying it if it were to outlive its scope. So in this case, you wouldn't need to worry about copying it, without needing to know what the function did.
If, on the other hand, you pass a block pointer as an argument to a function parameter whose declared compile-time type is a non-block object pointer type, then that function wouldn't be taking responsibility for any block copying, because for all it knows it's just a regular object, that just needs to be retained if stored in a place that outlives the current scope. In this case, if you think that the function may possibly store the value beyond the end of the call, you should copy the block before passing it, and pass the copy instead.
By the way, this is also true for any other case where a block-pointer type is assigned or converted to a regular object-pointer type; the block should be copied and the copy assigned, because anyone who gets the regular object-pointer value wouldn't be expected to do any block copying considerations.
ARC complicates the situation somewhat. The ARC specification specifies some situations where blocks are implicitly copied. For example, when storing to a variable of compile-time block-pointer type (or any other place where ARC requires a retain on a value of compile-time block-pointer type), ARC requires that the incoming value be copied instead of retained, so the programmer doesn't have to worry about explicitly copying blocks in those cases.
With the exception of retains done as part of initializing a
__strong parameter variable or reading a __weak variable, whenever
these semantics call for retaining a value of block-pointer type, it
has the effect of a Block_copy.
However, as an exception, the ARC specification does not guarantee that blocks only passed as arguments are copied.
The optimizer may remove such copies when it sees that the result is
used only as an argument to a call.
So whether to explicitly copy blocks passed as arguments to a function is still something the programmer has to consider.
Now, the ARC implementation in recent versions of Apple's Clang compiler has an undocumented feature where it will add implicit block copies to some of the places where blocks are passed as arguments, even though the ARC specification doesn't require it. ("undocumented" because I cannot find any Clang documentation to this effect.) In particular, it appears that it defensively always adds implicit copies when passing an expression of block-pointer type to a parameter of non-block object pointer type. In fact, as demonstrated by CRD, it also adds an implicit copy when converting from a block-pointer type to a regular object-pointer type, so this is the more general behavior (since it includes the argument passing case).
However, it appears that the current version of the Clang compiler does not add implicit copies when passing a value of block-pointer type as varargs. C varargs are not type-safe, and it is impossible for the caller to know what types the function expects. Arguably, if Apple wants to error on the side of safety, since there's no way of knowing what the function expects, they should add implicit copies always in this case too. However, since this whole thing is an undocumented feature anyway, I wouldn't say it's a bug. In my opinion, then programmer should never rely on blocks that are only passed as arguments being implicitly copied in the first place.
Short Answer:
You have found a compiler bug, possibly a re-introduced one, and you should report it at http://bugreport.apple.com.
Longer Answer:
This wasn't always a bug, it used to be a feature ;-) When Apple first introduced blocks they also introduced an optimisation in how they implemented them; however unlike normal compiler optimisations which are essentially transparent to the code they required programmers to sprinkle calls to a special function, block_copy(), in various places to make the optimisation work.
Over the years Apple removed the need for this, but only for programmers using ARC (though they could have done so for MRC users as well), and today the optimisation should be just that and programmers should no longer need to help the compiler along.
But you've just found a case where the compiler gets it wrong.
Technically you have a case a type loss, in this case where something known to be a block is passed as id - reducing the known type information, and in particular type loss involving the second or subsequent argument in a variable argument list. When you look at your array with po tmp you see the first value is correct, the compiler gets that one right despite there being type loss, but it fails on the next argument.
The literal syntax for an array does not rely on variadic functions and the code produced is correct. However initWithObjects: does, and it goes wrong.
Workaround:
If you add a cast to id to the second (and any subsequent) blocks then the compiler produces the correct code:
return [[NSArray alloc] initWithObjects:
^{NSLog(#"blk0:%d", val);},
(id)^{NSLog(#"blk1:%d", val);},
nil];
This appears to be sufficient to wake the compiler up.
HTH

malloc object lifetime with __unsafe_unretained typecast

I'm new to Objective-C and ARC, and have been searching and reading for hours without finding an answer. The code does what I want it to do, but I want to know that it doesn't rely on favorable conditions. Here's a simplified version of my code:
+(void)foo {
Class *classes = (__unsafe_unretained Class *)malloc(sizeof(Class) * someValue);
// Perform work without complicated memory management
free(classes);
}
I can't do much about the structure I'm allocating. It's filled by objc_getClassList. Unfortunately, Apple doesn't seem to have updated their documentation to explain how to do this under ARC. The typecast above is partly conceived by looking at examples, but it still makes me nervous.
One of my concerns is that if I would have allocated space for a "regular" object, then dealloc would have been called when the variable goes out of scope, which would have happened after free is called. But I don't think that's exactly what's going on here.
Does Class behave differently from other kinds of Objective-C data types? Should I expect something else from it?
What kind of pointer is classes? I guess it references an array of unknown size (a non-object pointer), but ARC still cares about it since the code won't compile without that cast. It looks like a strong pointer, but I don't know what it would be a strong pointer to.
Are there strong pointers to the objects in the array at all, or are the objects themselves strong pointers? If not, does ARC still work, or should I revert to some MRC conventions?
Will there be an automated call to dealloc? When, and how can the compiler ensure that that happens?
Is it better practice to set classes to NULL, and only then do the call to free? Or should I iterate over the array and do something about every object, such as setting them to nil?
you are allocating an array of struct pointers (Class == pointer to a struct), which will be filled with pointers to the Classes registered to the runtime. This pointers will not be released/dealloced etc. as long as your application runs.
You are not allocating any-classes, you are allocating space to hold pointers to this classes. Your code is totaly fine, and __unsafe_unretained is exactly what you want. It tells ARC you are holding a pointer to an Object you are not owning, and so prevent it from trying to release it at the end of the scope of your variable.
Does Class behave differently from other kinds of Objective-C data
types? Should I expect something else from it?
Class is a type that can hold a pointer to any class object, just like how id is a type that can hold a pointer to any object, and how NSString * is a type that can hold a pointer to any object that is an instance of NSString (or subtype thereof). Class objects are (one kind of) objects, and work in basically the same ways that other objects do. The type Class can be used just like other object-pointer types.
What kind of pointer is classes? I guess it references an array of
unknown size (a non-object pointer), but ARC still cares about it
since the code won't compile without that cast. It looks like a strong
pointer, but I don't know what it would be a strong pointer to.
classes is a pointer to Class, i.e. a pointer to a pointer to a class object. You are using it here to point to the first member of an array of Class, which is correct. classes is not an object pointer, but it is a pointer to an object pointer; that's why ARC cares. It's just like if you cast the result of malloc to id * or NSString **. When you don't specify a qualifier on Class, it is implicitly __unsafe_unretained. So classes is already a pointer to an unretained object pointer.
Are there strong pointers to the objects in the array at all, or are
the objects themselves strong pointers? If not, does ARC still work,
or should I revert to some MRC conventions?
Will there be an automated call to dealloc? When, and how can the
compiler ensure that that happens?
Class holds pointers to class objects. Class objects are basically singletons; they are not reference-counted. They generally live for the duration of the program, except perhaps if the class is unloaded. It's not necessary to maintain an explicit strong reference to the class object; the class will stay around.
Is it better practice to set classes to NULL, and only then do the
call to free? Or should I iterate over the array and do something
about every object, such as setting them to nil?
You obviously shouldn't set classes to NULL before calling free(); that way, calling free(classes); won't do anything. Since the elements of this array are __unsafe_unretained, there is no point to setting them to anything before freeing the memory; it will not make a difference.

Defining Objective-C blocks as properties - best practice

I've recently come across an Apple document that shows the following property declaration for a block:
#interface XYZObject : NSObject
#property (copy) void (^blockProperty)(void);
#end
Also, this article states:
Note: You should specify copy as the property attribute, because a block needs to be copied to keep track of its captured state outside of the original scope. This isn’t something you need to worry about when using Automatic Reference Counting, as it will happen automatically, but it’s best practice for the property attribute to show the resultant behavior. For more information, see Blocks Programming Topics.
I also read the suggested Blocks Programming Topics but haven't found anything relevant there.
I'm still curious as to why defining a block property as "copy" is best practice. If you have a good answer, please try to distinguish between ARC and MRC differences if there are any.
Thank you
By default blocks are created on the stack. Meaning they only exist in the scope they have been created in.
In case you want to access them later they have to be copied to the heap by sending a copy message to the block object. ARC will do this for you as soon as it detects a block needs to be accessed outside the scope its created in. As a best practise you declare any block property as copy because that's the way it should be under automatic memory management.
Read Stack and Heap Objects in Objective-C by Mike Ash for more info on stack vs. heap.
Blocks are, by default, allocated on the stack. This is an optimization, since stack allocation is much cheaper than heap allocation. Stack allocation means that, by default again, a block will cease to exist when the scope in which it is declared exits. So a block property with retain semantics will result in a dangling pointer to a block that doesn't exist anymore.
To move a block from the stack to the heap (and thus give it normal Objective-C memory management semantics and an extended lifetime), you must copy the block via [theBlock copy], Block_copy(theBlock), etc. Once on the heap, the block's lifetime can be managed as needed by retaining/releasing it. (Yes, this applies in ARC too, you just don't have to call -retain/-release yourself.)
So you want to declare block properties with copy semantics so the block is copied when the property is set, avoiding a dangling pointer to a stack-based block.
The "best practices" you refer to simply say, "Seeing as ARC is going to magically copy your block no matter what you write here, it's best you explicitly write 'copy' so as not to confuse future generations looking at your code."
Explanation follows:
Typically, you shouldn’t need to copy (or retain) a block. You only need to make a copy when you expect the block to be used after destruction of the scope within which it was declared. Copying moves a block to the heap.
–Blocks Programming Topics: Using Blocks, Copying Blocks
Clearly, assigning a block to a property means it could be used after the scope it was declared in has been destroyed. Thus, according to Blocks Programming Topics that block should be copied to the heap with Block_copy.
But ARC takes care of this for you:
Blocks “just work” when you pass blocks up the stack in ARC mode, such as in a return. You don’t have to call Block Copy any more.
–Transitioning to ARC
Note that this isn't about the retain semantics the block. There's simply no way for the block's context to exist without being moved off the (soon-to-be-popped) stack and on to the heap. So regardless of what attributes you qualify your #property with, ARC is still going to copy the block.

ARC in iOS questions

~ Will ARC always release an object the line after the last strong pointer is removed? Or is it undetermined and at some unspecified point in the future it will be released? Similarly, assuming that you don't change anything with your program, will ARC always be the same each time you run and compile your program?
~ How do you deal with handing an object off to other classes? For example, suppose we are creating a Cake object in a Bakery class. This process would probably take a long time and involve many different methods, so it may be reasonable for us to put the cake in a strong property. Now suppose we want to hand this cake object off to a customer. The customer would also probably want to have a strong pointer to it. Is this ok? Having two classes with strong pointers to the same object? Or should we nil out the Bakery's pointer as soon as we hand off?
Your code should be structured so the answer to this doesn't matter - if you want to use an object, keep a pointer to it, don't rely on ARC side effects to keep it around :) And these side effects might change with different compilers.
Two strong pointers is absolutely fine. ARC will only release the object when both pointers are pointing to something else (or nothing!)
ARC will implement the proper retains and releases at compile time. It will not behave any different than if you put them in there yourself so it will always do the same compilation and to answer your question should always behave the same. But that said it does not mean that your object will always be released immediately after the pointer is removed. Because you never call dealloc directly in any form of objective C you are only telling it that there is no reference count and that it is safe to release. This usually means that it will be released right away though.
If you pass an object from one class to another and the receiving class has a strong property associated with it and the class that passes it off eventually nils its pointer it will still have a reference count of at least 1 and will be fine.
Ok, first this answer might helpt you also a little bit: ARC equivalent of autorelease?
Generally after the last strong variable is nilled, the object is released immediately. If you store it in a property, you can nil the property, assign it to something like __strong Foo *temp = self.bar; before you nil, and return that local __strong variable (although arc normally detects the return, and inferes the __strong byitself).
Some more details on that: Handling Pointer-to-Pointer Ownership Issues in ARC
DeanWombourne's answer is correct; but to add to (1).
In particular, the compiler may significantly re-order statements as a part of optimization. While method calls will always occur in the order written in code (because any method call may have side effects), any atomic expression may be re-ordered by the compiler as long as that re-order doesn't impact behavior. Same thing goes for local variable re-use, etc...
Thus, the ARC compiler will guarantee that a pointer is valid for as long as it is needed, no more. But there is no guarantee when the pointed to object might be released other than that it isn't going to happen beyond the scope of declaration. There is also no guarantee that object A is released before B simply because A is declared and last used before B.
IN other words, as long as you write your code without relying on side effects and race conditions, it should all just work.
Please keep you code proper as it has diffrent behaviour on diffrent complier.

Resources