How can I detect when the Lua scripts access a global variable? - lua

I started to work with a C++/Lua codebase that is somewhat a mess, and when I dump the contents of _G in the middle of the application execution, there are hundreds of variables that I am sure were only initialized somewhere, but are not used anywhere else in the code anymore. To clean this up, I would like to setup a mechanism that will log whenever Lua accesses a global variable.
This was my idea of how to achieve this – I wanted to setup a proxy _G that would only pass all read and write accesses via __index and __newindex along to its own copy of the original _G. However this simple script doesn't work and only outputs:
C:\Programs\lua-5.1.5_Win32_bin\lua5.1: error in error handling
GProx =
{
vars = _G
}
setmetatable(GProx, {
__index = function (t, name)
print("Read> " .. name)
return t.vars[name]
end,
__newindex = function (t, name, val)
print("Write> " .. name .. ' = ' .. val)
t.vars[name] = val
end
})
setfenv(0, GProx)
a = 1 --> Expected to print 'Write> a'
print(a) --> Expected to print 'Read> print', 'Read> a', and '1'
Is this a good approach or is there a better way to do this?
If this is a valid line of thought, then what is the problem with my snippet?

Try this snippet instead, it will work with reads and writes:
do
-- Use local variables
local old_G, new_G = _G, {}
-- Copy values if you want to silence logging
-- about already set fields (eg. predeclared globals).
-- for k, v in pairs(old_G) do new_G[k] = v end
setmetatable(new_G, {
__index = function (t, key)
print("Read> " .. tostring(key))
return old_G[key]
end,
__newindex = function (t, key, val)
print("Write> " .. tostring(key) .. ' = ' .. tostring(val))
old_G[key] = val
end,
})
-- Set it at level 1 (top-level function)
setfenv(1, new_G)
end
Here's a rundown of the changes:
A block is used to have a local reference to the old _G. In your proposed implementation, if a global variable named vars is set, it will override GProx.vars and break the proxy.
key and val should go through tostring before printing, since most values (ie. tables) aren't implicitly converted to strings.
Setting the environment at level 1 is usually enough and will not mess with Lua's internal workings.

You can set a metatable directly on the _G table, as explained in PIL section 14.2, so you are really close. There are also a couple of existing Lua modules on the web that do this (perhaps penlight contains one).

Related

Evaluating expression in Lua in an Environment

This question has some reference to the question Evaluating expression in Lua in Mathematics Environment
The following code works.
tbl = {}
tbl.sin = math.sin
tbl.cos = math.cos
function mathEval(exp)
return load("return " .. exp, exp, "t", tbl)()
end
print(mathEval("sin(0)"))
print(mathEval("sin(0)+cos(1)+2^2"))
However, the following code does not work.
tbl = {}
tbl.sin = math.sin
tbl.cos = math.cos
function mathEval(exp)
return load("return " .. tostring(exp), tostring(exp), "t", tbl)()
end
print(mathEval(sin(0)))
print(mathEval(sin(0)+cos(1)+2^2))
I want to evaluate expressions without using quotes. How can that be done?
The problem with the line print(mathEval(sin(0)+cos(1)+2^2)) is that the argument of mathEval is evaluated before mathEval runs, so evaluating the variables sin and cos can not be deferred to the environment of mathEval; that is, mathEval gets a value, and no expression to evaluate at all!
First of all, one option to evaluate such mathematical expressions without the use of mathEval would be to simply temporarily change your environment:
local prev_env = _ENV -- this is needed to restore the environment later on
_ENV = tbl -- enter custom environment
local result = sin(0)+cos(1)+2^2
_ENV = prev_env -- restore environment
print(result)
if you want mathEval as a convenience helper, you'll have to pass the expression as a function returning the value to the expression such that calling the function will evaluate the expression; this allows you to defer the initialization. You'll have to use a powerful function called setfenv which allows you to change the environment of func; this was unfortunately removed in favor of _ENV in Lua 5.2 and later. The code then becomes trivial:
local function mathEval(func)
setfenv(func, tbl)
return func
end
mathEval(function() return sin(0)+cos(1)+2^2 end)
setfenv can be replicated in Lua 5.2 using the debug library, since Lua internally implements _ENV as an upvalue, as shown by Leafo:
local function setfenv(fn, env)
local i = 1
while true do
local name = debug.getupvalue(fn, i)
if name == "_ENV" then
debug.upvaluejoin(fn, i, (function()
return env
end), 1)
break
elseif not name then
break
end
i = i + 1
end
return fn
end
I assume you do not want to evaluate the expression before passing the result as an argument? Then you could wrap your expression into a function, which is then lazily called. It replaces the environment with tbl, executes the function, and reverts the environment.
tbl = {}
tbl.sin = math.sin
tbl.cos = math.cos
function mathEval(func)
local old = _ENV
_ENV = tbl
local r = func()
_ENV = old
return r
end
print(mathEval(function() return sin(0)+cos(1)+2^2 end))
You are passing sin(0) and sin(0)+cos(1)+2^2 to the mathEval(exp) function, but since sin and cos are not global variables and the math library is not being passed as an environment, Lua is unable to find them.
If you want to use math functions with the mathEval function, you can use the tbl table created before, to call the math functions, for example:
print(mathEval("tbl.sin(0)"))
print(mathEval("tbl.sin(0)+tbl.cos(1)+2^2"))
or alternatively you can pass the math library or the math functions as an upvalue to the load() function:
function mathEval(exp)
return load("return " .. tostring(exp), tostring(exp), "t", _ENV)()
end
print(mathEval("math.sin(0)"))
print(mathEval("math.sin(0)+math.cos(1)+2^2"))
It is possible to do this without quotes, this should work:
expression = string.format("%s(%d)", "math.sin", 0)
fn = load( "return " .. expression)
result = fn()
print(result) -- Output: 0
In this example, the string.format() function is used to create the string "math.sin(0)". The resulting string is then passed to the load() function as before.
In this way you don't need to use quotes on the string, and you can use placeholders to concatenate the variables.

Use of _ENV in Lua function does not have effect

I'm reviewing some toy examples from Lua and I found the following one over there with respect to environments:
M = {} -- the module
complex = {} -- global complex numbers registry
mt = {} --metatable for complex numbers
function new (r, i)
local cp = {}
cp = {r=r, i=i}
return setmetatable(cp,mt)
end
M.new = new -- add 'new' to the module
function M.op (...)
--Why does not it work?
local _ENV = complex
return ...
end
function M.add (c1, c2)
return new(c1.r + c2.r, c1.i + c2.i)
end
function M.tostring (c)
return string.format("(%g,%g)", c.r, c.i) --to avoid +-
end
mt.__tostring = M.tostring
mt.__add = M.add
complex.a = M.new(4,3)
complex.b = N.new(6,2)
--nil
M.op(a+b)
--It works
M,op(complex.a+complex.b)
The use of _ENV has no effect. However, if I use complex = _G, both lines work. How do set a local environment for M.op. I'm not asking for specific libraries, I just want to know why it does not work and how to fix it.
M.op(a+b)
This line doesn't do what you expect, because it uses values of a and b that are available when this method is called. It doesn't matter that you set _ENV value inside the method, as by the time the control gets there, the values referenced by a and b have already been retrieved and since both values are nil in your code, you probably get "attempt to perform arithmetic on global..." error.
how to fix it.
I'm not sure what exactly you want to fix, as you already reference the example that works. If you assign complex.a you can't assume that a will have the same value without mapping complex table to _ENV.

Lua: When and how to write tables to _G

I am learning Lua from a book, and I am NOT a programmer. I am trying to save a table of data to a file using the following functions (that were copied directly from the book), but the function is getting an error when trying to get a string from _G[resTable]. Why?
function readFromFile(filename,resTable)
local hfile = io.open(filename)
if hfile == nil then return end
local results = {} -why is this table here?
local a = 1
for line in hfile:lines() do-- debug shows this loop doesn't run (no lines in hfile?)
_G[resTable[a]] = line
a = a + 1
end
end
function writeToFile(filename, resTable)
local hfile = io.open(filename, "w")
if hfile == nil then return end
local i
for i=1, #resTable do
hfile:write(_G[resTable[i]])--bad argument #1 to 'write' (string expected, got nil)
end
end
'writeToFile" gets an error when trying to :write to _G[resTable[i]]. In the two previous functions listed here, I don't understand why they are referencing _G[resTable[i]] since I don't see any code that is writing to _G.
So here is the order of execution:
local aryTable = {
"Score",
"Lives",
"Health",
}
readFromFile("datafile", aryTable)
writeToFile("datafile", aryTable)
and I get an error:
bad argument #1 to 'write' (string expected, got nil)
stack traceback:
[C]: in function 'write'
test.lua:45: in function 'writeToFile'
test.lua:82: in main chunk
Apparently the author has implemented a way of saving a list of global variables to file and restore them.
The function writeToFile expects a filename and a list of global variables names (resTable). Then it opens a the filename for writing and iterates over the provided names:
for i=1, #resTable do
hfile:write(_G[resTable[i]])
end
in this loop resTable[i] is the i-th name and _G[resTable[i]] is the corresponding value, taken from the table _G, which stores all the globals. If a global with that name is not defined, _G[resTable[i]] will return nil, which is the cause of the failure you experienced. Thus you must provide a resTable that is filled with names of existing globals to avoid this error.
Apart from this, the serialization strategy of the author is really naive, since it handles only variables with string values. In fact by saving the variables to file like that the type information is lost, thus a variable having the value "100" (a string) and another with value 100 (a number) will be stored the same on disk.
The problem is evident analyzing the readFromFile function. After opening the file for reading, it scans it line by line, creating a new variable for each name mentioned in its resTable list:
local a = 1
for line in hfile:lines() do
_G[resTable[a]] = line
a = a + 1
end
the problem is manyfold:
the loop variable line will always have a string value, thus the recreated globals will be all strings, even if they were numbers originally;
it assumes that the variables are recreated in the same order, thus you must provide the same names in resTable you used when you saved the file;
it assumes that the values are stored one per line, but this is a false assumption, since the writeToFile function doesn't write a newline character after each value;
Moreover that local results = {} is useless and in both functions the file handle hfile is not closed. This latter is very bad practice: it could waste system resources and if your script fails part of the supposedly written data could never make its way to disk, since it may be still stuck in some buffer. File handles are automatically closed when the script ends, but only if it ends in a sane way.
Unless you did some error in pasting the code or omitted significant parts of it or the book is building some example incrementally, I dare say it is fairly crappy.
If you want a quick and dirty way to save and retrieve some globals you could use this:
function writeToFile( filename, resTable )
local hfile = io.open(filename, "w")
if hfile == nil then return end
for _, name in ipairs( resTable ) do
local value = _G[name]
if value ~= nil then
hfile:write( name, " = ")
local vtype = type( value )
if vtype == 'string' then
hfile:write( string.format( "%q", value ) )
elseif vtype == 'number' or vtype == 'boolean' then
hfile:write( tostring( value ) )
else
-- do nothing - unsupported type
end
hfile:write( "\n" )
end
end
hfile:close()
end
readFromFile = dofile
It saves the globals as a Lua script and reads them back by executing the script using Lua dofile function. Its main limitation is that it can only save strings, booleans an numbers, but usually this is enough while learning.
You can test it with the following statements:
a = 10
b = "20"
c = "hello"
d = true
print( a, b, c, d )
writeToFile( "datafile", { "a", "b", "c", "d" } )
a, b, c, d = nil
print( a, b, c, d )
readFromFile( "datafile" )
print( a, b, c, d )
If you need more advanced serialization techniques you can refer to Lua WIKI page on table serialization.
Those aren't generalized "read/write any table from/to any file" functions. They apparently expect the name of a global table as an argument, not a [reference to a local] table itself. They look like the kind of one-off solution to a very specific problem that tends to show up in books. :-)
Your functions shouldn't be doing anything with _G. I don't have an API reference handy, but the read loop should be doing something like
resTable[a] = line
and the write loop would be doing
hfile:write(resTable[i])
Throw out that local "results" table too. :-)
This code reads and writes data from a file into global variables whose names are specified in aryTable. Since your file is empty, readFromFile does not actually set the variable values. And then writeToFile fails when trying to get the variable values, because they haven't been set.
Try putting data in the file so that the variables do get set, or set the variable values yourself before writing them to the file (e.g. Score = 10, etc.)

Create Lua function from string

I am creating functions (of x) from a string in Lua. The code I am using is
function fcreate(fs)
return assert(loadstring("return function (x) return " .. fs.." end"))()
end
This works for globals, e.g.
u=fcreate("math.sin(x)")
does the right thing.
However, it does not seem to like local variables. So
local c=1
u=fcreate("math.sin(x)+c")
will not work because c is local.
Is this fixable?
"loadstring does not compile with lexical scoping", so no, it can't see locals outside the loadstring call.
Is this fixable?
That depends. Why are you using loadstring in the first place? Lua supports closures as first class values, so I can't see from your example why you'd need loadstring.
Your example:
u = fcreate("math.sin(x)+c")
Can be rewritten without the need for loadstring or your fcreate function:
u = function(x) return math.sin(x)+c end
Which of course is the same as:
function u(x) return math.sin(x) + c end
I can see a case for loadstring if you have user-configurable expressions that you wanted to compile into some other function, but your case with the local c suggests that's not the case. Are you trying to make some kinda of home-rolled lamda syntax?
Can't be done in any reasonable way. For an example of why, look at this:
function makefunction(name)
local a = 1
local b = 2
local c = 3
-- ...
return assert(loadstring("return " .. name))
end
local a = 4
local func = makefunction("a")
print(func())
If this worked, what is printed? 1 or 4? Does it capture the variable from the place where the function was loaded, even though that function doesn't exist anymore? Or does it look it up from the place where it was called?
The first would mean that the function is lexically scoped wherever it's created. Being able to access the variable after the function has exited means that the variable would need to be promoted into an upvalue dynamically, which is not something that Lua can do at the moment. As it is now, Lua can see every access to a local variable during compilation, so it knows which variables to turn into upvalues (at a performance hit) and which to keep as locals.
The second would mean that variable accesses inside a loadstring'd function would work completely different than every other access in Lua: Lua uses lexical scoping, not dynamic scoping. It'd be a huge implementation change in Lua, and an extremely inconsistent one.
So, neither is supported. You can control the environment of a dynamically loaded function, using setfenv in Lua 5.1 or the env parameter of load(...) in Lua 5.2, but neither of those let you access local variables automatically.
Something you could do if you don't need to mutate the local variables is to pass those values as arguments to the generated function. You would still need to manually specify the variables to close over but its better then nothing.
For example, you can build up your closure to look like
return (function(a,b,c)
return function(x) return print(a, x) end
end)(...)
We might do that by changing your function to look like
function fcreate(variables, fs)
local varnames = {}
local varvalues = {}
local nvars = 0
for n,v in pairs(variables) do
nvars = nvars + 1
table.insert(varnames, n)
table.insert(varvalues, v)
end
local chunk_str = (
'return (function(' .. table.concat(varnames, ',') .. ') ' ..
'return function(x) return ' .. fs .. ' end ' ..
'end)(...)'
)
return assert( loadstring(chunk_str) )( unpack(varvalues, 1, nvars) )
end
local a = 1;
local f = fcreate({a=a}, 'x+a')
print(f(1), f(2))

What's the difference between these two Lua examples? Is one better?

I'm just getting started with Lua. In the example I'm learning from (the Ghosts & Monsters Corona open source), I see this pattern repeatedly.
local director = require("director")
local mainGroup = display.newGroup()
local function main()
mainGroup:insert(director.directorView)
openfeint = require ("openfeint")
openfeint.init( "App Key Here", "App Secret Here", "Ghosts vs. Monsters", "App ID Here" )
director:changeScene( "loadmainmenu" )
return true
end
main()
Is this some sort of convention experienced Lua programmers recommend or are there genuine advantages to doing it this way? Why wouldn't you just skip the function all together and do this:
local director = require("director")
local mainGroup = display.newGroup()
mainGroup:insert(director.directorView)
local openfeint = require ("openfeint")
openfeint.init( "App Key Here", "App Secret Here", "Ghosts vs. Monsters", "App ID Here" )
director:changeScene( "loadmainmenu" )
Is there some implicit benefit to the first style over the second? Thanks!
Is this some sort of convention experienced Lua programmers recommend or are there genuine advantages to doing it this way?
It's not typical. The advantage is that object state is private, but that's not enough of an advantage to recommend it.
I see this pattern repeatedly.
I've never seen it before, and it happens only once in the source you posted.
EDIT: Adding a response to a question asked in the comments below this post.
A function which accesses external local variables binds to those variables and is called a 'closure'. Lua (for historical reasons) refers to those bound variables as 'upvalues'. For example:
local function counter()
local i = 1
return function()
print(i)
i = i + 1
end
end
local a, b = counter(), counter()
a() a() a() b() --> 1 2 3 1
a and b are closures bound to different copies of i, as you can see from the output. In other words, you can think of a closure as function with it's own private state. You can use this to simulate objects:
function Point(x,y)
local p = {}
function p.getX() -- syntax sugar for p.getX = function()
return x
end
function p.setX(x_)
x = x_
end
-- for brevity, not implementing a setter/getter for y
return p
end
p1 = Point(10,20)
p1.setX(50)
print(p1.getX())
Point returns a table of closures, each bound to the locals x and y. The table doesn't contain the point's state, the closures themselves do, via their upvalues. An important point is that each time Point is called it creates new closures, which is not very efficient if you have large quantities of objects.
Another way of creating classes in Lua is to create functions that take a table as the first argument, with state being stored in the table:
function Point(x,y)
local p = {x=x,y=y}
function p:getX() -- syntax sugar for p.getX = function(self)
return self.x
end
function p:setX(x)
self.x = x
end
return p
end
p1 = Point(10,20)
p1:setX(50) -- syntax sugar for p1.setX(p1, 50)
print(p1:getX()) -- syntax sugar for p1.getX(p1)
So far, we're still creating new copies of each method, but now that we're not relying on upvalues for state, we can fix that:
PointClass = {}
function PointClass:getX() return self.x end
function PointClass:setX(x) self.x = x end
function Point(x,y)
return {
x = x,
y = y,
getX = PointClass.getX,
setX = PointClass.getY,
}
end
Now the methods are created once, and all Point instances share the same closures. An even better way of doing this is to use Lua's metaprogramming facility to make new Point instances automatically look in PointClass for methods not found in the instance itself:
PointClass = {}
PointClass.__index = PointClass -- metamethod
function PointClass:getX() return self.x end
function PointClass:setX(x) self.x = x end
function Point(x,y)
return setmetatable({x=x,y=y}, PointClass)
end
p1 = Point(10,20)
-- the p1 table does not itself contain a setX member, but p1 has a metatable, so
-- when an indexing operation fails, Lua will look in the metatable for an __index
-- metamethod. If that metamethod is a table, Lua will look for getX in that table,
-- resolving p1.setX to PointClass.setX.
p1:setX(50)
This is a more idiomatic way of creating classes in Lua. It's more memory efficient and more flexible (in particular, it makes it easy to implement inheritance).
I frequently write my own Lua scripts this way because it improves readability in this case:
function main()
helper1( helper2( arg[1] ) )
helper3()
end
function helper1( foo )
print( foo )
end
function helper2( bar )
return bar*bar
end
function helper3()
print( 'hello world!' )
end
main()
This way the "main" code is at the top, but I can still define the necessary global functions before it executes.
A simple trick, really. I can't think of any reason to do this besides readability.
The first style could be used too improove readability, but I would rather give the function some meaningful name instead of main or just go without the function.
By the way, I think it's always a good practice to name blocks of code, i.e. put them into functions or methods. It helps explain your intend with that piece of code, and encourages reuse.
I don't see much point to the first style as you've shown it. But if it said something like if arg then main() end at the bottom, the script might (just might) be useful as a loadable "library" in addition to being a standalone script. That said, having a main() like that smacks of C, not Lua; I think you're right to question it.

Resources