I am pretty new to data warehousing, so I'm a little unclear on some aspects of design. My business sells memberships. People join to become a member, and of course resign to no longer be a member. We have join date and the resign date as dimensions. Would we have one fact table or two for memberships? I am thinking that 'members joining' would be a fact table, and 'members resigning' would be another fact table. Or do we have it all in one fact table encompassing all Membership joins and resigns?
Fact and Dimension tables in a data warehouse are more about foriegn key relationships. So you might have a fact table like:
FactMemberStatus:
MemberId JoinDate ResignDate
Then Dimension tables like:
DimMember
MemberId MemberName MemberPhone MemberAddress Etc.
DimDate
PKDate WeekOfYear MonthOfYear FiscalMonthOfYear Etc.
Then you could join on JoinDate->PKDate, or ResignDate->PKDate, you could also query on if a member was joined or resigned, if either joindate was null, or resigndate was null.
Without knowing much else, those would be my first thoughts.
Related
I have two entities: Location and Employee. Each employee works in a single location at a time. For any given moment in time, the model is as follows:
There is, however, a requirement to also store historical information for all locations and employees for every end-of-month. I can achieve this by adding a Month PK attribute in both entities, but: how do I handle the relationship in that case?
A foreign key has to reference a composite PK in its entirety. Several alternatives come to mind:
Option 1: repeat the Month attribute in the Employee entity to get the full PK as FK attributes. This feels a bit redundant? If an employee has existed in a given month, surely she has to work in a location in the same month - i.e. the two Month attributes have to always have the exact same value:
Option 2: re-use the Month attribute in the PK of the Employee entity as a foreign key referencing Location. I don't even know if this is allowed (note: I'm going to be using SQL Server eventually, if it matters here)?
Option 3: create a separate bridge entity that holds the history of Location-Employee relationships. This feels kind of neat, but then again I have some doubts as to whether or not I can use one Month attribute here or if I need two of them. Also, it would allow many-to-many relationships (an employee in several locations on a given month), which is not supposed to happen in this case and I'd like to be able to enforce this in the data model.
Am I missing something obvious here? What is the "correct" and properly normalized solution? Or should I just leave the FK constraints out?
I'm trying to create a ER diagram of a simple retail chain type database model. You have your customer, the various stores, inventory etc.
My first question is, how to represent a customer placing an order in a store. If the customer is a discount card holder, the company has their name, address etc, so I can have a cardHolder entity connect to item and store with an order relationship. But how do I represent an order being placed by a customer who is not really an entity in the database?
Secondly, how are conditional... stuff represented in ER diagrams, e.g. in a car dealership, a customer may choose one or more optional extra when buying a car. I would think that there is a Car entity with the relevant attributes and the options as a multi-valued attribute, but how do you represent a user picking those options (I.e. order table shows the car ordered, extras chosen and the added cost of extras) in the order relationship?
First, do you really need to model customers as distinct entities, or do you just need order, payment and delivery details? Many retail systems don't track individual customers. If you need to, you can have a customer table with a surrogate key and unique constraints on identifying attributes like SSN or discount card number (even if those attributes are optional). It's generally hard to prevent duplication in customer tables since there's no ideal natural key for people, so consider whether this is really required.
How to model optional extras depends on what they depends on. Some extras might be make or model-specific, e.g. the choice of certain colors or manual/automatic transmission. Extended warranties might be available across the board.
Here's an example of car-specific optional extras:
car (car_id PK, make, model, color, vin, price, ...)
car_extras (extra_id PK, car_id FK, option_name, price)
order (order_id PK, date_time, car_id FK, customer_id FK, payment_id FK, discount)
order_extras (order_id PK/FK, car_id FK, extra_id PK/FK)
I excluded price totals since those can be calculated via aggregate queries.
In my example, order_extras.car_id is redundant, but supports better integrity via the use of composite FK constraints (i.e. (order_id, car_id) references the corresponding columns in order, and (car_id, extra_id) references the corresponding columns in car_optional_extras to prevent invalid extras from being linked to an order).
Here's an ER diagram for the tables above:
First, as per your thought you can definitely have two kinds of customers. Discount card holders whose details are present with the company and new customers whose details aren't available with the company.
There are three possible ways to achieve what you are trying,
1) Have two different order table in the system(which I personally wouldn't suggest)
2) Have a single Order table in the system and getting the details of those who are a discount card holder.
3) Insert a row in the discount card holder table for new/unregistered customers having only one order table in the system.
Having a single order table would make the system standardized and would be more convenient while performing many other operations.
Secondly, to solve your concern, you need to follow normalization. It will reduce the current problem faced and will also make the system redundant free and will make the entities light weighted which will directly impact on the performance when you grow large.
The extra chosen items can be listed in the order against the customer by adding it at the time of generating a bill using foreign key. Dealing with keys will result in fast and robust results instead of storing redundant/repeating details at various places.
By following normalization, the problem can be handled by applying foreign keys wherever you want to refer data to avoid problems or errors.
Preferably NF 4 would be better. Have a look at the following link for getting started with normalization.
http://www.w3schools.in/dbms/database-normalization/
Im new to Rails and I'm in the middle of sketching up an ERD for my new app. A Yelp-sort of app, where a Client is sorted by price.
So I want one Client to have many priceranges - One Client can both have pricerange $ and Pricerange $$$$ for example. The priceranges are:
$ - $$ - $$$ - $$$$ - $$$$$
How would this look in a table? Would I create a table called PriceRange with Range1, Range2, Range3, Range4, Range5 to be booleans?
Doesn't the PriceRange-table need any foreign/primary keys?
PriceRange
Range1 (Boolean)
Range2 (Boolean)
Range3 (Boolean)
Range4 (Boolean)
Range5 (Boolean)
Look, I'm Brazilian and I'm not very knowledgeable about yelp applications. I do not quite know what it is, but from what I saw, they are systems to assess/measure/evaluate (perhaps the translation is wrong here for you) things, in this case, companies, right?
Following this logic, let's think...
By the description of your problem (context), you have clients (companies), and they can have price ranges, correct? If:
A price interval is represented by textual names, such as "$", "$$",
and so on,
and the same price range may have (numeric) values for different companies,
And the same price range (type) can be (or not) assigned to different
companies,
Then here is what we have:
By decomposing this conceptual model, you would end up with three tables:
Companies
Price Ranges
Price Ranges from Companies
The primary keys of Company and Price Ranges will be passed to Price Ranges from Companies as foreign keys. You can use them as a composite primary key, or use a surrogate key. If using a surrogate key, you will permit/allow a company to have the same kind of price range more than once, which I believe is not the case.
Let's look at another situation, if things are simpler as:
If there is no need to store prices,
and an company may have or not one or more price ranges represented by "$", "$$", and so on,
Then here is what we have:
Similarly, we'll have the same 3 tables. Likewise, you still must pass the primary keys of Companies and Price Ranges to Price Ranges from Companies as foreign keys.
So I want one Client to have many priceranges - One Client can both
have pricerange $ and Pricerange $$$$ for example
Notice how N-N relationships allow us to create optional relationships between entities. This will allow a company to have zero, one, two, (etc.) or all price ranges defined. Again, so that is not allowed a company to have a price range more than once, set the foreign keys as composite primary key in Price Ranges from Companies.
If you have any questions or anything I explained has nothing to do with your context, please do not hesitate to comment.
EDIT
Is the Price ranges from companies what is called a Joint table?
Yes. There are also other terms used, some in different areas of computer science, such as Link Table, or Intermediate Table.
Actually we do not have a table here in the diagram, but an entity. In the Conceptual Model there are no tables, but entities and relationships. Be careful with this terminology when developing the Conceptual Model, or else you may get confused (I say this from experience).
However, yes, once decomposed, we will have a table from this relationship. When decomposed, N-N relationships will always become tables, no exception. Differently, 1-1 and 1-N (or N-1) relationships do not become tables. These tables with these special names (Join/Link/Intermediate Tables) serves to associate records from different tables, hence the name.
And is it necessary to have a column called Price Range Id? I mean
what is it there for?
At where? If you say at the Price Ranges entity, it is rather necessary. Must We not identify records in a table in some way? Here I set what is called a Surrogate Key. If on the other hand, you have a column with unique values for each record in the table, you can also use this column. I highly recommend that you consider the use of surrogate keys. Read the link I gave you.
In the Conceptual Model, we have to define the properties and also the primary keys. During the phase of the conceptual model, natural attributes of entities can become primary keys if you so desire. In this case, we have what is called a Natural Key.
If on the other hand you refer to Price Ranges from Companies entity, so the question is another ("And is it necessary to have a column called Price Range Id?"). Here we have a table with two columns, as I told you. The two are foreign keys. You need it so you can relate rows from the two tables... I think you were not referring to that, is not it? If so, no problem, you can comment and ask more questions. I do not care to answer. To be honest, I did not quite understand your question.
EDIT 2
So that Company 28 can be identified in the Price Ranges (for instance
ID 40) Which would make it easier to call out the price ranges it has?
Maybe my English is not very good, but it seems to me that you have a beginner's doubt/question in relation to the concept of tables and relationships between them. If not that, I apologize because maybe I did not understand. But let's see...
The tables in a database have rows / records. Each line has its own data. Even with this, each line / record needs to be differentiated and identified somehow. That is why we attach to each line an identifier, known as the primary key (this, and this). In summary, the primary key is how we identify, differentiate, separate and organize different records.
Even if all records have different values, you must select a field (column) that represents the primary key of the table. By obligation, every record MUST have a primary key. Although you can choose which field is a primary key, you are allowed to choose one or more fields to serve as the primary key. When this happens, that is, when more than one field participates/serves as the primary key, we have a table with something called Composite Primary Key. Similarly, it has the ability to identify records. Note that, because of that, primary key values must be unique, otherwise you may have 2 identical records.
This is the basic concept so that we can relate tables to each other, in case, records/rows of tables together. If we have a Company identified by the ID 28 (a line/record), and we want to relate it to a Price Range identified by the ID 40, then we need to store somewhere that relationship (28 <--> 40). This is where the role of intermediate/link/join tables comes in (but only to relationships N-N! For 1-N or N-1 relationships it works similarly, but not identical).
My original question was whether it was necessary, and why a company
ID had to link up with a price range ID at all.
With this table storing records which relates to other records (for their primary keys), we can perform a SQL join operation (If you have questions about this, see this image). Depending on how you perform this operation, you'll get:
All companies that have Price Ranges.
All companies that do not have Price Ranges.
All the Price Ranges of a given company.
All companies that have or not a X Price Range.
All price ranges that are given or not to companies.
...
Anyway, you get all this because of the established relationship.
If it could just be taken out and then the table of price ranges would
only involve Pricerange1-5.
This sentence I did not understand. What should be taken out? Could you please explain this sentence better?
I'm trying to design my first data mart with a star schema from an Excel Sheet containing informations about a Help Desk Service calls, this sheet contains 33 fields including different informations and I can't identify the fact table because I want to do the reporting later based on different KPI's.
I want to know how to identify the fact table measures easily and I have another question which is : Can a fact table contain only foreign keys of dimensions and no measures? Thanks in advance guys and sorry for my bad English.
You can have more than one fact table.
A fact table represents an event or process that you want to analyze.
The structure of the fact tables depend on the process or event that you are trying to analyze.
You need to tell us the events or processes that you want to analyze before we can help you further.
Can a fact table contain only foreign keys of dimensions and no measures?
Yes. This is called a factless fact table.
Let's say you want to do a basic analysis of calls:
Your full table might look like this
CALL_ID
START_DATE
DURATION
AGENT_NAME
AGENT_TENURE (how long worked for company)
CUSTOMER_NAME
CUSTOMER_TENURE (how long a customer)
PRODUCT_NAME (the product the customer is calling about)
RESOLVED
You would turn this into a fact table like this:
CALL_ID
START_DATE_KEY
AGENT_KEY
CUSTOMER_KEY
PRODUCT_KEY
DURATION (measure)
RESOLVED (quasi-measure)
And you would have a DATE dimension table, AGENT dimension table, CUSTOMER dimension table and PRODUCT dimension table.
Agile Data Warehouse Design is a good book, as are the ones by Kimball.
In general, the way I've done it (and there are a number of ways to do anything) is that the categorical data is referenced with a FKey in the fact table, but anything you want to perform aggregations on (typically as data types $/integers/doubles etc) can be in the fact table as well. So for example, a fact table might contain a hierarchy of types, such as product_category >> product_name, and it usually contains a time and/or location field as well; all of which would be referenced by a FKEY to a lookup table. The measure columns are usually integer based or money data, and are used in aggregate functions grouped by the other fields like this:
select sum(measureOne) as sum, product_category from facttable
where timeCol between X and Y group by product_category...etc
At one time a few years ago, I did have a fact table that had no measure column... because the only measure I had was based on count, which I would do dynamically by grouping different dimensions in the fact table.
In my Rails application, I have a variety of database tables that contain user data. Some of these tables have a lot of rows (as many as 500,000 rows per user in some cases) and are queried frequently. Whenever I query any table for anything, the user_id of the current user is somewhere in the query - either directly, if the table has a direct relation with the user, or through a join, if they are related through some other tables.
Should I denormalize the user_id and include it in every table, for faster performance?
Here's one example:
Address belongs to user, and has a user_id
Envelope belongs to user, and has a user_id
AddressesEnvelopes joins an Address and an Envelope, so it has envelope_id and address_id -- it doesn't have user_id, but could get to it through either the envelope or the address (which must belong to the same user).
One common expensive query is to select all the AddressesEnvelopes for a particular user, which I could accomplish by joining with either Address or Envelope, even though I don't need anything from those tables. Or I could just duplicate the user id in this table.
Here's a different scenario:
Letter belongs to user, and has a user_id
Recepient belongs to Letter, and has a letter_id
RecepientOption belongs to Recepient, and has a recepient_id
Would it make sense to duplicate the user_id in both Recepient and RecepientOption, even though I could always get to it by going up through the associations, through Letter?
Some notes:
There are never any objects that are
shared between users. An entire
hierarchy of related objects always
belongs to the same user.
The user owner of objects never changes.
Database performance is important because it's a data intensive application. There are many queries and many tables.
So should I include user_id in every table so I can use it when creating indexes? Or would that be bad design?
I'd like to point out that it isn't necessary to denormalize, if you are willing to work with composite primary keys. Sample for AddressEnvelop case:
user(
#user_id
)
address(
#user_id
, #addres_num
)
envelope(
#user_id
, #envelope_num
)
address_envelope(
#user_id
, #addres_num
, #envelope_num
)
(the # indicates a primary key column)
I am not a fan of this design if I can avoid it, but considering the fact that you say that all these objects are tied to a user, this type of design would make it relatively simply to partition your data (either logically, put ranges of users in separate tables or physically, using multiple databases or even machines)
Another thing that would make sense with this type of design is using clustered indexes (in MySQL, the primary key of InnoDB tables are built from a clustered index). If you ensure the user_id is always the first column in your index, it will ensure that for each table, all data for one user is stored close together on disk. This is great when you always query by user_id, but it can hurt perfomance if you query by another object (in which case duplication like you sugessted may be a better solution)
At any rate, before you change the design, first make sure your schema is already optimized, and you have proper indexes on your foreign key columns. If performance really is paramount, you should simply try several solutions and do benchmarks.
As long as you
a) get a measurable performance improvement
and
b) know which parts of your database are real normalized data and which are redundant improvements
there is no reason not to do it!
Do you actually have a measured performance problem? 500 000 rows isn't very large table. Your selects should be reasonable fast if they are not very complex and you have proper indexes on your columns.
I would first see if there are slow queries and try to optimize them with indexes. If that is not enough, only then I would look into denormalization.
Denormalizations that you suggest seem reasonable if you can't achieve the required performance with other means. Just make sure that you keep denormalized fields up-to-date.