How to send a Disassociation Frame - wifi

Is it possible, in modern days SOs, to programatically create and send an 802.11 "Disassociation frame"?
Specifically, I'd like to be able to do this from Windows, Linux and Android. The problem is, I have no idea where to start or what to do or whether this is even possible. Any tips would be appreciated.

It's not doable via standard APIs. 802.11 frames are being sent by the protocol implementation, which resides in the driver & device FW. Applications interact with lower SW tiers (such as driver or FW) on a higher abstraction level - e.g. request to connect, disconnect etc. These requests are translated by the driver/FW to a sequence of relevant frames (in addition to other logic that is required to perform the requested operation). E.g., a disassociation frame will be sent as part of the disconnect sequence, bit so are other frames. Unless you have access and abilities to manipulate the driver code directly, you can't force it to send 802.11 frames on demand. Some vendors might have drivers that expose proprietary APIs to perform additional operations, such as those that you request. However, even if such API exists, it won't be exposed or even documented to external parties (such as yourself), due to security issues and business reasons.
Note : It's possible to use various hacking tools, such as the one suggested by #jml in comment (see the link for details) to indirectly solicit the driver/FW to send frames. This is done by creating a situation which 802.11 protocol identifies as requiring sending a relevant frame(s).

Related

iOS what is the highest level networking abstraction that is appropriate for handling bi-directional sync over http?

I'm looking at the Apple networking guidelines that suggest that the user should try to work with the highest level of abstraction possible when dealing with networking.
I'm working on a client-server app, where the server is master, and an iOS device is slave. These communicate over HTTP, establishing a connection that lives for the lifetime of the app's usage session. The app and the server synchronize assets over this connection.
My question is - what level of abstraction is appropriate for implementing bi-directional sync over HTTP? Is it sockets, NSURLConnection, some AFNetworking subclass, input/output streams?
There are a lot of possible good answers to this. I think all I can do is offer one pattern which has worked well for me but it may not apply to your needs and use cases. To restate my comment above "whatever you do will be a tradeoff between responsiveness, power consumption, data consistency, and implementation cost."
The level of abstraction I aim for is a set of service objects which expose an interface in terms of the application's domain models. The rest of the app, primarily objects in the controller layer, should be able to communicate with these services by passing models to methods (e.g. "fetchUserWithId:userId" or "createUser:user") and without any awareness of the urls, paths, or HTTP verbs involved at the network layer.
Those service objects can map domain model operations into paths, HTTP verbs, and possibly request bodies or headers. In most cases I find that the services themselves can then share a lower level service which accepts those values and constructs the actual HTTP request. This provides a single location to configure host names, set global headers, and manage a request queue via NSURLRequest, NSURLSession, AFNetworking, or whatever library you prefer.
I'll include completion blocks on my service object methods so that controllers can be notified of success or failure but try not to use those blocks to pass models back up to the controller layer. Instead I prefer to have controllers monitor Core Data or some other persistence layer and react to changes. That way controllers remain flexible and respond to any update in the models they are concerned with and do not assume that they are aware of all possible sources of changes to those models.
So far none of this addresses how you should check for remote changes to your models. The best option may be to design a system which does not need to do so. What if your client obtained a set of recent changes only when posting data to the server, could it still provide a good user experience? Could the server use push notifications to occasionally notify clients of updates?
If you must check for changes sockets or long polling are usually more responsive than short polling but it may be hard for roaming mobile clients to keep those connections open. All of these approaches also tend to keep the client's radios active and consume lots of power in the process.
Without knowing more about the problem I'd default to short polling but try to design interactions which allow this to be as infrequent as possible (e.g. one check when the app resumes). I also use HTTP features (etags, if-modified-since, or custom content ranges) to limit the size of responses when there are no changes. If you have a good service layer managing network requests that also gives you a good place to introduce rate limiting. Allowing controllers to express interest to fetching up to date information but deferring to the services to throttle or batch requests based on what the rest of the app is doing (e.g. don't repeat the same request if those models were updated recently unless the user deliberately triggered the action).

Delphi read data from spirolabIII device using HL7

I have already developed a Clinic management application for Allergy Control Clinics which stores patients' medical files and test results in a database and generates reports for analysis.
there's a section for storing spirometry results in the database. currently i get results
from an Excel file which is exported by WinspiroPro (the application that comes with spirolab devices) and store them in the database.
few days ago i came across the word "HL7" which seems to be a Standard protocol for communicating with these medical devices, so i can directly get the results from the device using Delphi.
also in spirolab device user manual it is mentioned that the device is compatible with this system.
now my question is, how can I implement this system (HL7) in delphi?
Thanks
As is usual with these kind of inter-professional standards, you need to pay to get them, at least on http://www.hl7.org in this case.
If I search around on the net, there may be existing tools that you can use, or have a look how they work internally:
http://code.ohloh.net/search?s=HL7
https://code.google.com/hosting/search?q=HL7&sa=Search
http://sourceforge.net/directory/?q=HL7
HL7 is not bound to a specific transport layer. It is a protocol on the application level, the seventh layer of the ISO 7-layer-model, hence Level 7. It describes messages and the events, when this messages should be send.
It just gives some recommendations how to do message transfer on the subjacent layers, e.g. MLLP with tcp socket communication. But in principle you are free to use any transport layers you want, may it be direct socket communication, file transfer or what ever.
Although most systems now can use tcp, it is also possible to use HL7 with different underlying transport protocols as RS232. If I remember right, there was also an example about message transfer / coupling with RS232 in the implementation guides of the documentation. And yes, the documentation and protocol standard documetation is free after registering.
Did you ask your provider for the WinspiroPRO version with HL7 ability? Maybe it supports already socket communication with tcp.
Otherwise you either need access to the sourcecode of ldTCPCClient and replace the tcp part with an RS232 part or you have to use a software just for parsing/building (unmarshalling/marshalling) of HL7 messages together with a software, that handles the transportation level.
By the way, just from the name, I guess that ldTCPclient is not apt for your need, as you will probably need a host and not a client component.

Communication architecture choice in an IOS / Linux application?

I have a software architecture problem.
I have to design an IOS application which will communicate with a Linux application to get the state of a sensor, and to publish an actuator command. The two applications run in a Local network with an Ad-Hoc WiFi connection between the IOS device and the Linux computer.
So I have to synchronize two values between two applications (as described in figure 1). In a Linux/Linux system, I resolve this kind of problem thanks to any publisher / subscriber middleware. But how can I solve this problem in an IOS / Linux world ?
Actually the Linux application embed an asynchronous TCP Server, and the IOS application is an asynchronous TCP client. Both applications communicate through the TCP Socket. I think that this method is a low level method, and I would like to migrate the communication layer to a much higher level Service based communication framework.
After some bibliographic research I found three ways to resolve my problem :
The REST Way :
I can create a RESTful Web Service which modelize the sensor state, and which is able to send command to the actuator. An implementation of a RESTful web service client exists for IOS, that is "RESTKit", and I think I can use Apache/Axis2 on the server side.
The RPC Way :
I can create on my Linux computer a RPC service provider thanks to the libmaia. On the IOS side, I can use xmlrpc (https://github.com/eczarny/xmlrpc). My two programs will communicate thanks to the service described in the figure below.
The ZeroConf way :
I didn't get into detail of this methods, but I suppose I can use Bonjour on the IOS side, and AVAHI on the linux side. And then create custom service like in RPC on both side.
Discussion about these methods :
The REST way doesn't seem to be the good way because : "The REST interface is designed to be efficient for large-grain hypermedia data transfer" (from the Chapter 5 of the Fielding dissertation). My data are very fined grain data, because my command is just a float, and my sensor state too.
I think there is no big difference between the ZeroConf way and the RPC Way. ZeroConf provide "only" the service discovering mechanism, and I don't need this kind of mechanism because my application is a rigid application. Both sides knows which services exists.
So my question are :
Does XML RPC based method are the good choice to solve my problem of variable synchronization between an iPhone and a Computer ?
Does it exist other methods ?
I actually recommend you use "tcp socket + protobuf" for your application.
Socket is very efficient in pushing messages to your ios app and protobuf can save your time to deliver a message instead of character bytes. Your other high level proposal actually introduces more complications...
I can provide no answers; just some things to consider in no particular order.
I am also assuming that your model is that the iOS device polls the server to synchronize state.
It is probably best to stay away from directly using Berkeley sockets on the iOS device. iOS used to have issues with low level sockets not connecting after a period of inactivity. At the very least I would use NSStream or CFStream objects for transport or, if possible, I'd use NSURL, NSURLConnection, NSURLRequest. NSURLConnection's asynchronous data loading capability fits well with iOS' gui update loop.
I think you will have to implement some form of data definition language independent of your implementation method (RES, XML RPC, CORBA, roll your own, etc.)
The data you send and receive over the wire would probably be XML or JSON. If you use XML you would have to write your own XML document handler as iOS implements the NSXMLParser class but not the NSXMLDocument class. I would refer JSON as the JSON parser will return an NSArray or NSDictionary hierarchy of NSObjects containing the unserialized data.
I have worked on a GSOAP implementation that used CFStreams for transport. Each request and response was handled by a request specific class to create request specific objects. Each new request required a new class definition for the returned data. Interactivity was maintained by firing the requests through an NSOperationQueue. Lots of shim here. The primary advantage of this method was that the interface was defined in a wsdl schema (all requests, responses, and data structures were defined in one place.
I have not looked at CORBA on iOS - you would have to tie in C++ libraries to your code and change the transport to use CFStreams Again, lots of shim but the advantage of having the protocol defined in the idl file. Also you would have a single connection to the server instead of making and breaking TCP connections for each request.
My $.02
XML RPC and what you refer to as "RESTful Web Service" will both get the job done. If you can use JSON instead of XML as the payload format, that would simplify things somewhat on the iOS side.
Zeroconf (aka bonjour) can be used in combination with either approach. In your case it would allow the client to locate the server dynamically, as an alternative to hard-coding an URL or other address in the client. Zeroconf doesn't play any role in actual application-level data transfer.
You probably want to avoid having the linux app call the iOS app, since that will complicate the iOS app a lot, plus it will be hard on the battery.
You seem to have cherry picked some existing technologies and seem to be trying to make them fit the problem.
I would like to migrate the communication layer to a much higher level Service based communication framework
Why?
You should be seeking the method which meets your requirements in terms of available resources (should you assume that the client can maintain a consistent connection? how secure does it need to be?) However besides functionality, availability and security, the biggest concern should be how to implement this with the least amount of effort.
I'd be leaning towards the REST aproach because:
I do a lot of web development so that's where my skills lie
it has minimal dependencies
there is well supported code implementing the protocol stack at both ends
it's trivial to replace either end of the connection to test out the implementation
it's trivial to monitor the communications (if they're not encrypted) to test the implementaiton
adding encryption / authentication does not change the data exchange
Regards your citation, no HTTP is probably not the most sensible for SCADA - but then neither is iOS.

How do I increase the priority of a TCP packet in Delphi?

I have a server application that receives some special TCP packet from a client and needs to react to it as soon as possible by sending an high-level ACK to the client (the TCP ACK won't suite my needs).
However, this server is really network intensive and sometimes the packet will take too long to be sent (like 200ms in a local network, when a simple server application can send it in less than 1ms).
Is there a way to mark this packet with a high-priority tag or something like that in Delphi? Or maybe with the Win32 API?
Thanks in advance.
EDIT
Thanks for all the answers so far. I'll add some details. My product has the following setup: there are several devices that are built upon vehicles with WIFI conectivity. When they arrive at the garage, those device connect to my server and start to transmit data.
Because of hardware limitations, I implemented a high-level ACK to make the device aware that the last packet arrived successfully (please, don't argue about this - the data may be broken even if I got a correct TCP ACK). However, if I use my server software, that communicates with a remote database, to issue this ACK, I get very long delay (>200ms). If I use an exclusive software to do this task, I get small latencies (<1ms). So, I was imagining if I could just tell Windows to send those special packets first, as it seems to me that this package is getting delayed so the database ones can get delivered.
That's the motivation behind my question.
EDIT 2
As requested: this is legacy software and I'm using the legacy dclsockets140.bpl package and Delphi 2010 (14.0.3593.25826).
IMO it is very difficult to realize this. there are a lot of equipment and software involved. first of all, if you communicate between 2 different OS's you got a latency. second, soft and hard firewalls, antiviruses, everything is filtering/delaying your package.
you can try also to 'hack' the system(this involve some very good knowledge on how the frames/segments are packed/send,flow control,congestion,etc), either by altering it from code, either by using some tools like http://half-open.com/ or others.
In short, passing MSG_OOB flag to the send function marks the data as "urgent". Detailed discussion about the OOB in the context of Windows Sockets implementation specifics is available here.

How to communicate within this system?

We intend to design a system with three "tiers".
HQ, with a single server
lots of "nodes" on a regional basis
users, with iPads.
HQ communicates 2-way with the nodes which communciate 2-way with the users. Users never communicate with HQ nor vice-versa.
The powers that be decree a Windows app from HQ (using Delphi) and a native desktop app for the users' iPads. They have no opinion on the nodes.
If there are compelling technical arguments, I might be able to beat them down from "decree" to "prefer" on the Windows program (and, for isntance, make it browser based). The nodes have no GUI, they just sit there playing middle-man.
What's the best way for these things to communicate (SOAP/HTTP/AJAX/jQuery/home-brewed-protocol-on-top-of-TCP/something-else?) Is it best to use the same protocol end to end, or different protocols for hq<-->node and node<-->iPad?
Both ends of each of those two interfaces might wish to initiate a transaction (which I can easily do if I roll my own protocol), so should I use push/pull/long-poll or what?
I hope that this description makes sense. Please ask questions if it does not. Thanks.
Update:
File size is typcially below 1MB with nothing likely to be above 10MB or even 5MB. No second file will be sent before a first file is acknowledged.
Files flow "downhill" from HQ to node to iPad. Files will never flow "uphill", but there will be some small packets of data (in addition to acks) which are initiated by user action on the iPad. These will go to the local node and then to the HQ. We are probably talking <128 bytes.
I suppose there will also be general control & maintenance traffic at a low rate, in all directions.
For push / pull (publish / subscribe or peer to peer communication), cross-platform message brokers could be used. I am not sure if there are (iOS) client libraries for Microsoft Message Queue (MSMQ), but I would also evaluate open source solutions like HornetQ, Apache ActiveMQ, Apollo, OpenMQ, Apache QPid or RabbitMQ.
All these solutions provide a reliable foundation for distributed messaging, like failover, clustering, persistence, with high performance and many clients attached. On this infrastructure message with any content type (JSON, binary, plain text) can be exchanged, and on top messages can contain routing and priority information. They also support transacted messaging.
There are Delphi and Free Pascal client libraries available for many enterprise quality open source messaging products. (I am am the author of some of them, supporting ActiveMQ, Apollo, HornetQ, OpenMQ and RabbitMQ)
Check out MessagePack: http://msgpack.org/
Also, here's more RPC discussion on SO:
RPC frameworks available?
MessagePack: fast cross-platform serializer and RPC - please share experience
ICE might be of interest to you: http://zeroc.com/index.html
They have an iOS layer: http://zeroc.com/icetouch/index.html
IMHO there are too little requisites to decide what technology to use. What data are exchanged, how often, what size? Are there request/response time constraints? etc. etc. Never start selecting a technology before you understand your needs deeply.

Resources