Why is MkSimpleSolver not equivalent to MkSolver("smt") with Z3? - z3

I'm experimenting with Z3 tactics. I noticed that the solver returned by
context.MkSimpleSolver()
has a different performance profile than the solver
context.MkSolver(context.MkTactic("smt"))
I understand that the "smt" tactic is supposed to perform the most general algorithm that Z3 has. So both these solvers should have identical output. Given this, why do they have different performance profiles?
I am testing this on a formula that is quantified over a bitvector. The quantifier body makes use of integers and bitvectors. The simple solver returns immediately with sat. The other one takes longer than I was willing to wait.
(If it helps here is a little background: I am trying to make Z3 bit-blast all integer terms to bitvectors hoping that this speeds things up. All integers involved are constrained to [0, 3]. I'm trying to get the bit-blast tactic to "take".)

Related

Skolem functions in SMT and ATPs

While reading Extending Sledgehammer with SMT solvers I read the following:
In the original Sledgehammer architecture, the available lemmas were rewritten
to clause normal form using a naive application of distributive laws before the relevance filter was invoked. To avoid clausifying thousands of lemmas on each invocation, the clauses were kept in a cache. This design was technically incompatible with the (cache-unaware) smt method, and it was already unsatisfactory for ATPs, which include custom polynomial-time clausifiers.
My understanding of SMT so far is as follows: SMTs don't work over clauses. Instead, they try to build a model for the quantifier-free part of a problem. The search is refined by instantiating quantifiers according to some set of active terms. Thus, indeed no clausal form is needed for SMT solvers.
We rewrote the relevance filter so that it operates on arbitrary HOL formulas, trying to simulate the old behavior. To mimic the penalty associated with Skolem functions in the clause-based code, we keep track of polarities and detect quantifiers that give rise to Skolem functions.
What's the penalty associated with Skolem functions? I could understand they are not good for SMTs, but here it seems that they are bad for ATPs too...
First, SMT solvers do work over clauses and there is definitely some (non-naive) normalization internally (e.g., miniscoping). But you do not need to do the normalization before calling the SMT solver (especially, since it will be more naive and generate a larger number of clauses).
Anyway, Section 6.6.7 explains why skolemization was done on the Isabelle side. To summarize: it is not possible to introduce polymorphic constants in a proof in Isabelle; hence it must be done before starting the proof.
It seems likely that, when writing the paper, not changing the filtering lead to worse performance and, hence, the penalty was added. However, I tried to find the relevant code simulating clausification in Sledgehammer, so I don't believe that this happens anymore.

Does z3's SAT solver obtain a complete assignment before doing a theory consistency check?

Does z3's SAT solver(s) obtain a complete assignment to the propositional(ized) part of an SMT problem before doing a theory consistency check? In particular, I am curious to know what is done by default for each of the following background theories/combination (if this is theory-dependent): Linear Real Arithmetic (LRA), Linear Integer Real Arithmetic (LIRA), Non-Linear Integer Real Arithmetic (NIRA)? Also, where in the actual code (codeplex stable z3 v4.3.1) is a propositional literal (heuristically) decided by the SAT solver?
No, Z3 does not obtain a complete assignment before doing theory consistency checks.
However, it delays "expensive" checks. "Expensive" checks are performed in a step called final_check that is performed only when a (complete) proprositional assignment is produced. Here the word "expensive" is relative. Linear real arithmetic consistency checks can be quite expensive due to big number arithmetic computations, but they are considered "cheap" in Z3.
Linear real arithmetic checks are done eagerly. Nonlinear and linear integer arithmetic checks are done at the final_check step.
Note that Z3 contains more than one solver. The behavior above is for the one implemented in the directory smt. The nonlinear real arithmetic solver (nlsat directory) works in a completely different way, and it does not use the final_check approach described above.

Quantifier elimination for multilinear rational arithmetic in Z3

As far as I understand, Z3, when encountering quantified linear real/rational arithmetic, applies a form of quantifier elimination described in Bjørner, IJCAR 2010 and more recent work by Bjørner and Monniaux (that's what qe_sat_tactic.cpp says, at least).
I was wondering
Whether it still works if the formula is multilinear, in the sense that the "constants" are symbolic. E.g. ∀x, ax≤b ⇒ ax ≤ 0 can be dealt with by separating the cases a<0, a=0 and a>0. This is possible using Weispfenning's virtual substitution approach, but I don't know what ended up being implemented in Z3 (that is, whether it implements the general approach or the one restricted to constant coefficients).
Whether it is possible, in Z3, to output the result of elimination instead of just solving for one model. There might be a Z3 tactic to do so but I don't know how this is supposed to be requested.
Whether it is possible, in Z3, to perform elimination as described above, then use the new nonlinear solver to obtain a model. Again, a succession of tactics might do the trick, but I don't know how this is supposed to be requested.
Thanks.
After long travels (including a travel where I met David at a conference), here is a short summary to answer the questions as they are posed.
There is no specific support for multi-linear forms.
The 'qe' tactic produces results of elimination, but may as a side-effect decide satisfiablity.
This is a very interesting problem to investigate, but it is not supported out of the box.

can smt/z3 be used for optimazation

Can SMT solver efficiently find a solution (or an assignment) for the pseudo-Boolean problem as described as follows:
\sum {i..m} f_i x1 x2.. xn *w_i
where f_i x1 x2 .. xn is a Boolean function, and w_i is a weight of Int type.
For your convenience, I highlight the contents in page 1 and 3, which is enough for specifying
the pseudo-Boolean problem.
SMT solvers typically address the question: given a logical formula, optionally using functions and predicates from underlying theories (such as the theory of arithmetic, the theory of bit-vectors, arrays), is the formula satisfiable or not.
They typically don't expose a way for you specify objective functions
and typically don't have built-in optimization procedures.
Some special cases are formulas that only use Booleans or a combination of Booleans and either bit-vectors or integers. Pseudo Boolean constraints can be formulated with either integers or encoded (with some care taking overflow semantics into account) using bit-vectors, or they can be encoded directly into SAT. For some formulas using bounded integers that fall in the class of psuedo-boolean problems, Z3 will try automatic reductions into bit-vectors. This applies only to benchmkars in the SMT-LIB2 format tagged as QF_LIA or applies if you explicitly invoke a tactic that performs this reduction (the "qflia" tactic should apply).
While Z3 does not directly expose objective functions, the question of augmenting
SMT solvers with objective functions is actively pursued in the research community.
One approach suggested by Nieuwenhuis and Oliveras in SAT 2006 was to build in
solving for the "weighted max SMT" problem as a custom theory. Yices comes with built-in
features for weighted max SMT, Z3 does not, but it is possible to write a custom
theory that performs the backtracking search of a weighted max SMT solver, but nothing
out of the box.
Sometimes people try to specify objective functions using quantified formulas.
In theory one could hope that quantifier elimination procedures then can solve
for the objective.
This is generally pretty bad when it comes to performance. Quantifier elimination
is an overfit and the routines (that we have) will not be efficient.
For your problem, if you want to find an optimized (maximum or minimum) result from the sum, yes Z3 has this ability. You can use the Optimize class of Z3 library instead of Solver class. The class provides two methods for 'maximization' and 'minimization' respectively. You can pass the SMT variable that is needed to be optimized and Optimization class model will give the solution for you. It actually worked with C# API using Microsoft.Z3 library. For your inconvenience, I am attaching a snippet:
Optimize opt; // initializing object
opt.MkMaximize(*your variable*);
opt.MkMinimize(*your variable*);
opt.Assert(*anything you need to do*);

Has anyone tried proving Z3 with Z3 itself?

Has anyone tried proving Z3 with Z3 itself?
Is it even possible, to prove that Z3 is correct, using Z3?
More theoretical, is it possible to prove that tool X is correct, using X itself?
The short answer is: “no, nobody tried to prove Z3 using Z3 itself” :-)
The sentence “we proved program X to be correct” is very misleading.
The main problem is: what does it mean to be correct.
In the case of Z3, one could say that Z3 is correct if, at least, it never returns “sat” for an unsatisfiable problem, and “unsat” for a satisfiable one.
This definition may be improved by also including additional properties such as: Z3 should not crash; the function X in the Z3 API has property Y, etc.
After we agree on what we are supposed to prove, we have to create models of the runtime, programming language semantics (C++ in the case of Z3), etc.
Then, a tool (aka verifier) is used to convert the actual code into a set of formulas that we should check using a theorem prover such as Z3.
We need the verifier because Z3 does not “understand” C++.
The Verifying C Compiler (VCC) is an example of this kind of tool.
Note that, proving Z3 to be correct using this approach does not provide a definitive guarantee that Z3 is really correct since our models may be incorrect, the verifier may be incorrect, Z3 may be incorrect, etc.
To use verifiers, such as VCC, we need to annotate the program with the properties we want to verify, loop invariants, etc. Some annotations are used to specify what code fragments are supposed to do. Other annotations are used to "help/guide" the theorem prover. In some cases, the amount of annotations is bigger than the program being verified. So, the process is not completely automatic.
Another problem is cost, the process would be very expensive. It would be much more time consuming than implementing Z3.
Z3 has 300k lines of code, some of this code is based on very subtle algorithms and implementation tricks.
Another problem is maintenance, we are regularly adding new features and improving performance. These modifications would affect the proof.
Although the cost may be very high, VCC has been used to verify nontrivial pieces of code such as the Microsoft Hyper-V hypervisor.
In theory, any verifier for programming language X can be used to prove itself if it is also implemented in language X.
The Spec# verifier is an example of such tool.
Spec# is implemented in Spec#, and several parts of Spec# were verified using Spec#.
Note that, Spec# uses Z3 and assumes it is correct. Of course, this is a big assumption.
You can find more information about these issues and Z3 applications on the paper:
http://research.microsoft.com/en-us/um/people/leonardo/ijcar10.pdf
No, it is not possible to prove that a nontrivial tool is correct using the tool itself. This was basically stated in Gödel's second incompleteness theorem:
For any formal effectively generated theory T including basic arithmetical truths and also certain truths about formal provability, if T includes a statement of its own consistency then T is inconsistent.
Since Z3 includes arithmetic, it cannot prove its own consistency.
Because it was mentioned in a comment above: Even if the user provides invariants, Gödels's theorem still applies. This is not a question of computability. The theorem states that no such prove can exist in a consistent system.
However you could verify parts of Z3 with Z3.
Edit after 5 years:
Actually the argument is easier than Gödel's incompleteness theorem.
Let's say Z3 is correct if it only returns UNSAT for unsatisfiable formulas.
Assume we find a formula A, such that if A is unsatisfiable then Z3 is correct (and we somehow have proven this relation).
We can give this formula to Z3, but
if Z3 returns UNSAT it could be because Z3 is correct or because of a bug in Z3. So we have not verified anything.
if Z3 returns SAT and a countermodel, we might be able to find a bug in Z3 by analyzing the model
otherwise we don't know anything.
So we can use Z3 to find bugs in Z3 and to improve confidence about Z3 (to an extremely high level), but not to formally verify it.

Resources