How can I calculate some comparable similarity score which tells me how similar the img_scene is compared to img_object.
When I render the img_matches, the homography successfully renders the boundaries of the found object in the scene, but I need some comparable score like if (score > THRESHOLD) { /* have match */ } else { /* dont have match */ }.
Mat img_scene = srcImage;
Mat img_object = _templateImage;
//-- Step 1: Detect the keypoints using SURF Detector
SurfFeatureDetector detector(_minHessian);
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect(img_object, keypoints_object);
detector.detect(img_scene, keypoints_scene);
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute(img_object, keypoints_object, descriptors_object);
extractor.compute(img_scene, keypoints_scene, descriptors_scene);
if (descriptors_object.type() != descriptors_scene.type())
return;
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector<DMatch> matches;
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for (size_t i = 0; i < (size_t)descriptors_object.rows; i++ ) {
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector<DMatch> good_matches;
for(size_t i = 0; i < (size_t)descriptors_object.rows; i++) {
if (matches[i].distance < 2 * min_dist) {
good_matches.push_back(matches[i]);
}
}
if (good_matches.size() < 4)
return;
Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for (size_t i = 0; i < (size_t)good_matches.size(); i++) {
//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[(size_t)good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[(size_t)good_matches[i].trainIdx].pt);
}
vector<uchar> mask;
Mat H = findHomography(obj, scene, CV_RANSAC, 3, mask);
//-- Get the corners from the image_1 (the object to be "detected")
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0, 0);
obj_corners[1] = cvPoint(img_object.cols, 0);
obj_corners[2] = cvPoint(img_object.cols, img_object.rows);
obj_corners[3] = cvPoint(0, img_object.rows);
std::vector<Point2f> scene_corners(4);
perspectiveTransform(obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line(img_matches, scene_corners[0] + Point2f(img_object.cols, 0), scene_corners[1] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[1] + Point2f(img_object.cols, 0), scene_corners[2] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[2] + Point2f(img_object.cols, 0), scene_corners[3] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[3] + Point2f(img_object.cols, 0), scene_corners[0] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
UPDATE:
Here is the working solution as #mikesapi proposed:
...
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector<DMatch> good_matches;
double good_matches_sum = 0.0;
for (size_t i = 0; i < matches.size(); i++ ) {
if( matches[i].distance < max(2*min_dist, 0.02) ) {
good_matches.push_back(matches[i]);
good_matches_sum += matches[i].distance;
}
}
double score = (double)good_matches_sum / (double)good_matches.size();
if (score < 0.18) {
// have match
} else {
// dont have match
}
...
A similarity score is greater if the object and scene are more similar (as opposed to a dissimilarity score, where a higher score means they are more dissimilar). Since you are using distances with FLANN (which I assume is giving you approximate euclidean distances between descriptors) a dissimilarity score is easier to generate, since euclidean distance is greater if descriptors are further apart in the descriptor space, and small if they are close together.
One simple way to generate a dissimilarity score would be to:
1. For each descriptor in the object image: calculate the minimum distance to each descriptor in the scene image.
2. Sum the (minimum) distances, and normalize by the number of descriptors in the object image.
Then you will have a single score quantifying the match between the object and the scene.
Related
I try to match multi-object with rotation using a simple template like a smile face template
,and I wanna detect it in the test image like test image
I have tried to using Features2D and Homography to detect, however there are many problems.
P1: It seems this keypoints matching method is not accurate for SIMPLE template(I have tried this method in another template which is much more complicated, the matching result is better). Is there any method on this problem?
P2: Definitely this method is not suitable in multi-object test image. How could I match multiple objects using a single template?(the premise is I don't know the number and location of objects in the template)
Below is my function code.
`//load image
Mat img1 = imread( "2.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat img2 = imread( "1.png", CV_LOAD_IMAGE_GRAYSCALE );
//-- Step 1: Detect the keypoints using SURF Detector
SurfFeatureDetector detector( hessian );
vector<KeyPoint> keypoints1, keypoints2;
detector.detect( img1, keypoints1 );
detector.detect( img2, keypoints2 );
//-- Step 2: Extract the keypoints using SURF Extractor
Mat descriptors1,descriptors2;// extract keypoints
SurfDescriptorExtractor extractor; //Create Descriptor Extractor
extractor.compute( img1, keypoints1, descriptors1 );
extractor.compute( img2, keypoints2, descriptors2 );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//-- Draw only "good" matches
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols,0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
`
I am a beginner in computer-vision,and it is my first time asking on this forum. Many thanks for your help!
If your problem is to detect only that kind of images, a simple thing that you can do is to use a circle detector. And you can group the point of the bigger circle (head) and the points of the eyes. If you know the position of the centroids of those 3 circles, you can have the position and rotation of the face by studying where are the eyes.
In the image, the red points represent the centroids of the circles, you can get the head position by finding where the main centroid is, alpha is the angle between the right eye and the main centroid. If you can find the new angle you can compute theta which will indicate the rotation of the face, and maybe this could work even scale changes
I am trying to detect an object using the SurfFeatureDetect and FLANN matcher. However, the code is not able to detect the image accurately. I have also posted the results in pictorial format.
Here's my code from the opencv tutorial website
int main(int argc, char** argv){
if (argc != 3){
readme(); return -1;
}
Mat img_object = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img_scene = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);
if (!img_object.data || !img_scene.data)
{
std::cout << " --(!) Error reading images " << std::endl; return -1;
}
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 100;
SurfFeatureDetector detector(minHessian);
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect(img_object, keypoints_object);
detector.detect(img_scene, keypoints_scene);
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute(img_object, keypoints_object, descriptors_object);
extractor.compute(img_scene, keypoints_scene, descriptors_scene);
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for (int i = 0; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for (int i = 0; i < descriptors_object.rows; i++)
{
if (matches[i].distance < 3 * min_dist)
{
good_matches.push_back(matches[i]);
}
}
Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for (int i = 0; i < good_matches.size(); i++)
{
//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
}
Mat H = findHomography(obj, scene, CV_RANSAC);
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0, 0); obj_corners[1] = cvPoint(img_object.cols, 0);
obj_corners[2] = cvPoint(img_object.cols, img_object.rows); obj_corners[3] = cvPoint(0, img_object.rows);
std::vector<Point2f> scene_corners(4);
perspectiveTransform(obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line(img_matches, scene_corners[0] + Point2f(img_object.cols, 0), scene_corners[1] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[1] + Point2f(img_object.cols, 0), scene_corners[2] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[2] + Point2f(img_object.cols, 0), scene_corners[3] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[3] + Point2f(img_object.cols, 0), scene_corners[0] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
//-- Show detected matches
imshow("Good Matches & Object detection", img_matches);
waitKey(0);
return 0;}
/** #function readme */
void readme()
{
std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl;}
That is a very common failure. The problem is that the homography has 8 degree of freedom (8DOF). This means that you need at least 4 correct correspondences to calculate a good homography:
As you can see, the homography has 8 parameters (the last parameter h33 is just a scale factor).
The problem arises when other than good corrspondces (inlier) you need to filter out bad correspondences (outlier). When the are more outliers than inliers (total/outliers > 50%) the RANSAC procedure cannot find the outlier and you obtain weird results.
Solutions to this problem are not easy. You could:
Use a training image with a similar out-of-plane rotation (and a similar scale) of the object in your query image.
Or, use a transformation with less degree of freedom (such as similarity transform). In this way you will need less inliers. Altho OpenCV lacks support for this simpler transformation with a robust fitting method.
I am trying to calculate the fundamental matrix of 2 images (different photos of a static scene taken by a same camera).
I calculated it using findFundamentalMat and I used the result to calculate other matrices (Essential, Rotation, ...). The results were obviously wrong. So, I tried to be sure of the accuracy of the calculated fundamental matrix.
Using the epipolar constraint equation, I Computed fundamental matrix error. The error is very high (like a few hundreds). I do not know what is wrong about my code. I really appreciate any help. In particular: Is there any thing that I am missing in Fundamental matrix calculation? and is the way that I calculate the error right?
Also, I ran the code with very different number of matches. There are usually lots of outliers. e.g in a case with more than 80 matches, there was only 10 inliers.
Mat img_1 = imread( "imgl.jpg", CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( "imgr.jpg", CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 1000;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors with a brute force matcher
BFMatcher matcher(NORM_L1, true);
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
vector<Point2f>imgpts1,imgpts2;
for( unsigned int i = 0; i<matches.size(); i++ )
{
// queryIdx is the "left" image
imgpts1.push_back(keypoints_1[matches[i].queryIdx].pt);
// trainIdx is the "right" image
imgpts2.push_back(keypoints_2[matches[i].trainIdx].pt);
}
//-- Step 4: Calculate Fundamental matrix
Mat f_mask;
Mat F = findFundamentalMat (imgpts1, imgpts2, FM_RANSAC, 0.5, 0.99, f_mask);
//-- Step 5: Calculate Fundamental matrix error
//Camera intrinsics
double data[] = {1189.46 , 0.0, 805.49,
0.0, 1191.78, 597.44,
0.0, 0.0, 1.0};
Mat K(3, 3, CV_64F, data);
//Camera distortion parameters
double dist[] = { -0.03432, 0.05332, -0.00347, 0.00106, 0.00000};
Mat D(1, 5, CV_64F, dist);
//working with undistorted points
vector<Point2f> undistorted_1,undistorted_2;
vector<Point3f> line_1, line_2;
undistortPoints(imgpts1,undistorted_1,K,D);
undistortPoints(imgpts2,undistorted_2,K,D);
computeCorrespondEpilines(undistorted_1,1,F,line_1);
computeCorrespondEpilines(undistorted_2,2,F,line_2);
double f_err=0.0;
double fx,fy,cx,cy;
fx=K.at<double>(0,0);fy=K.at<double>(1,1);cx=K.at<double>(0,2);cy=K.at<double>(1,2);
Point2f pt1, pt2;
int inliers=0;
//calculation of fundamental matrix error for inliers
for (int i=0; i<f_mask.size().height; i++)
if (f_mask.at<char>(i)==1)
{
inliers++;
//calculate non-normalized values
pt1.x = undistorted_1[i].x * fx + cx;
pt1.y = undistorted_1[i].y * fy + cy;
pt2.x = undistorted_2[i].x * fx + cx;
pt2.y = undistorted_2[i].y * fy + cy;
f_err += = fabs(pt1.x*line_2[i].x +
pt1.y*line_2[i].y + line_2[i].z)
+ fabs(pt2.x*line_1[i].x +
pt2.y*line_1[i].y + line_1[i].z);
}
double AvrErr = f_err/inliers;
I believe the problem is because you calculated the Fundamental matrix based on brute force matcher only, you should make some more optimization for these corresponding point, like ration test and symmetric test.
I recommend you to ready page 233, from book "OpenCV2 Computer Vision Application Programming Cookbook" Chapter 9.
Its explained very well!
Given that we are supplied with the intrinsic matrix K, and distortion matrix D, we should undistort the image points before feeding it to findFundamentalMat and should work on undistorted image co-ordinatates henceforth (ie for computing the error). I found that this simple change reduced the maximum error of any image point pair from 176.0f to 0.2, and the number of inliers increased from 18 to 77.
I also toyed with normalizing the undistorted image points before it to findFundamentalMat, which reduced the maximum error of any image point pair to almost zero, though it does not increase the number of inliers any further.
const float kEpsilon = 1.0e-6f;
float sampsonError(const Mat &dblFMat, const Point2f &pt1, const Point2f &pt2)
{
Mat m_pt1(3, 1 , CV_64FC1 );//m_pt1(pt1);
Mat m_pt2(3, 1 , CV_64FC1 );
m_pt1.at<double>(0,0) = pt1.x; m_pt1.at<double>(1,0) = pt1.y; m_pt1.at<double>(2,0) = 1.0f;
m_pt2.at<double>(0,0) = pt2.x; m_pt2.at<double>(1,0) = pt2.y; m_pt2.at<double>(2,0) = 1.0f;
assert(dblFMat.rows==3 && dblFMat.cols==3);
assert(m_pt1.rows==3 && m_pt1.cols==1);
assert(m_pt2.rows==3 && m_pt2.cols==1);
Mat dblFMatT(dblFMat.t());
Mat dblFMatp1=(dblFMat * m_pt1);
Mat dblFMatTp2=(dblFMatT * m_pt2);
assert(dblFMatp1.rows==3 && dblFMatp1.cols==1);
assert(dblFMatTp2.rows==3 && dblFMatTp2.cols==1);
Mat numerMat=m_pt2.t() * dblFMatp1;
double numer=numerMat.at<double>(0,0);
if (numer < kEpsilon)
{
return 0;
} else {
double denom=dblFMatp1.at<double>(0,0) + dblFMatp1.at<double>(1,0) + dblFMatTp2.at<double>(0,0) + dblFMatTp2.at<double>(1,0);
double ret=(numer*numer)/denom;
return (numer*numer)/denom;
}
}
#define UNDISTORT_IMG_PTS 1
#define NORMALIZE_IMG_PTS 1
int filter_imgpts_pairs_with_epipolar_constraint(
const vector<Point2f> &raw_imgpts_1,
const vector<Point2f> &raw_imgpts_2,
int imgW,
int imgH
)
{
#if UNDISTORT_IMG_PTS
//Camera intrinsics
double data[] = {1189.46 , 0.0, 805.49,
0.0, 1191.78, 597.44,
0.0, 0.0, 1.0};
Mat K(3, 3, CV_64F, data);
//Camera distortion parameters
double dist[] = { -0.03432, 0.05332, -0.00347, 0.00106, 0.00000};
Mat D(1, 5, CV_64F, dist);
//working with undistorted points
vector<Point2f> unnormalized_imgpts_1,unnormalized_imgpts_2;
undistortPoints(raw_imgpts_1,unnormalized_imgpts_1,K,D);
undistortPoints(raw_imgpts_2,unnormalized_imgpts_2,K,D);
#else
vector<Point2f> unnormalized_imgpts_1(raw_imgpts_1);
vector<Point2f> unnormalized_imgpts_2(raw_imgpts_2);
#endif
#if NORMALIZE_IMG_PTS
float c_col=imgW/2.0f;
float c_row=imgH/2.0f;
float multiply_factor= 2.0f/(imgW+imgH);
vector<Point2f> final_imgpts_1(unnormalized_imgpts_1);
vector<Point2f> final_imgpts_2(unnormalized_imgpts_2);
for( auto iit=final_imgpts_1.begin(); iit != final_imgpts_1.end(); ++ iit)
{
Point2f &imgpt(*iit);
imgpt.x=(imgpt.x - c_col)*multiply_factor;
imgpt.y=(imgpt.y - c_row)*multiply_factor;
}
for( auto iit=final_imgpts_2.begin(); iit != final_imgpts_2.end(); ++ iit)
{
Point2f &imgpt(*iit);
imgpt.x=(imgpt.x - c_col)*multiply_factor;
imgpt.y=(imgpt.y - c_row)*multiply_factor;
}
#else
vector<Point2f> final_imgpts_1(unnormalized_imgpts_1);
vector<Point2f> final_imgpts_2(unnormalized_imgpts_2);
#endif
int algorithm=FM_RANSAC;
//int algorithm=FM_LMEDS;
vector<uchar>status;
Mat F = findFundamentalMat (final_imgpts_1, final_imgpts_2, algorithm, 0.5, 0.99, status);
int n_inliners=std::accumulate(status.begin(), status.end(), 0);
assert(final_imgpts_1.size() == final_imgpts_2.size());
vector<float> serr;
for( unsigned int i = 0; i< final_imgpts_1.size(); i++ )
{
const Point2f &p_1(final_imgpts_1[i]);
const Point2f &p_2(final_imgpts_2[i]);
float err= sampsonError(F, p_1, p_2);
serr.push_back(err);
}
float max_serr=*max_element(serr.begin(), serr.end());
cout << "found " << raw_imgpts_1.size() << "matches " << endl;
cout << " and " << n_inliners << " inliners" << endl;
cout << " max sampson err" << max_serr << endl;
return 0;
}
working on square detection. the problem is on the radiant floor. as you can see pictures.
any idea for solve this problem ?
thank you.
source image :
output :
source code:
void EdgeDetection::find_squares(const cv::Mat& image,
vector >& squares,cv::Mat& outputFrame) {
unsigned long imageSize = (long) (image.rows * image.cols) / 1000;
if (imageSize > 1200) RESIZE = 9;
else if (imageSize > 600) RESIZE = 5;
else if (imageSize > 300) RESIZE = 3;
else RESIZE = 1;
Mat src(Size(image.cols / RESIZE, image.rows / RESIZE),CV_YUV420sp2BGR);
// Resize src to img size
resize(image, src, src.size() ,0.5, 0.5, INTER_LINEAR);
Mat imgeorj=image;
const int N = 10;//11;
Mat pyr, timg, gray0(src.size(), CV_8U), gray;
// down-scale and upscale the image to filter out the noise
pyrDown(src, pyr, Size(src.cols / 2, src.rows / 2));
pyrUp(pyr, timg, src.size());
#ifdef blured
Mat blurred(src);
medianBlur(src, blurred, 15);
#endif
vector<vector<Point> > contours;
// find squares in every color plane of the image
for ( int c = 0; c < 3; ++c) {
int ch[] = {c, 0};
mixChannels(&timg, 1, &gray0, 1, ch, 1);
// try several threshold levels
for ( int l = 0; l < N; ++l) {
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if (l == 0) {
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
// Canny(gray0, gray, 0, thresh, 5);
// Canny(gray0, gray, (10+l), (10+l)*3, 3);
Canny(gray0, gray,50, 200, 3 );
// dilate canny output to remove potential
// holes between edge segments
dilate(gray, gray, Mat(), Point(-1, -1));
//erode(gray, gray, Mat(), Point(-1, -1), 1);
} else {
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
gray = gray0 >= (l + 1) * 255 / N;
}
// find contours and store them all as a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
vector<Point> approx;
// test each contour
for (size_t i = 0; i < contours.size(); ++i) {
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true) * 0.02, true);
if (approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 5000 &&
isContourConvex(Mat(approx))) {
float maxCosine = 0;
for (register int j = 2; j < 5; ++j) {
// find the maximum cosine of the angle between joint edges
float cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if (maxCosine < 0.3) {
squares.push_back(approx);
}
}
}
}
}
debugSquares(squares, imgeorj,outputFrame);
}
You can try using Hough transform for detecting straight edges and use the those for constructing the square.
I am trying to use OpenCV's feature detection tools in order to decide whether a small sample image exists in a larger scene image or not.
I used the code from here as a reference (without the homography part).
UIImage *sceneImage, *objectImage1;
cv::Mat sceneImageMat, objectImageMat1;
cv::vector<cv::KeyPoint> sceneKeypoints, objectKeypoints1;
cv::Mat sceneDescriptors, objectDescriptors1;
cv::SurfFeatureDetector *surfDetector;
cv::FlannBasedMatcher flannMatcher;
cv::vector<cv::DMatch> matches;
int minHessian;
double minDistMultiplier;
minHessian = 400;
minDistMultiplier= 3;
surfDetector = new cv::SurfFeatureDetector(minHessian);
sceneImage = [UIImage imageNamed:#"twitter_scene.png"];
objectImage1 = [UIImage imageNamed:#"twitter.png"];
sceneImageMat = cv::Mat(sceneImage.size.height, sceneImage.size.width, CV_8UC1);
objectImageMat1 = cv::Mat(objectImage1.size.height, objectImage1.size.width, CV_8UC1);
cv::cvtColor([sceneImage CVMat], sceneImageMat, CV_RGB2GRAY);
cv::cvtColor([objectImage1 CVMat], objectImageMat1, CV_RGB2GRAY);
if (!sceneImageMat.data || !objectImageMat1.data) {
NSLog(#"NO DATA");
}
surfDetector->detect(sceneImageMat, sceneKeypoints);
surfDetector->detect(objectImageMat1, objectKeypoints1);
surfExtractor.compute(sceneImageMat, sceneKeypoints, sceneDescriptors);
surfExtractor.compute(objectImageMat1, objectKeypoints1, objectDescriptors1);
flannMatcher.match(objectDescriptors1, sceneDescriptors, matches);
double max_dist = 0; double min_dist = 100;
for( int i = 0; i < objectDescriptors1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
cv::vector<cv::DMatch> goodMatches;
for( int i = 0; i < objectDescriptors1.rows; i++ )
{
if( matches[i].distance < minDistMultiplier*min_dist )
{
goodMatches.push_back( matches[i]);
}
}
NSLog(#"Good matches found: %lu", goodMatches.size());
cv::Mat imageMatches;
cv::drawMatches(objectImageMat1, objectKeypoints1, sceneImageMat, sceneKeypoints, goodMatches, imageMatches, cv::Scalar::all(-1), cv::Scalar::all(-1),
cv::vector<char>(), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
for( int i = 0; i < goodMatches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( objectKeypoints1[ goodMatches[i].queryIdx ].pt );
scn.push_back( objectKeypoints1[ goodMatches[i].trainIdx ].pt );
}
cv::vector<uchar> outputMask;
cv::Mat homography = cv::findHomography(obj, scn, CV_RANSAC, 3, outputMask);
int inlierCounter = 0;
for (int i = 0; i < outputMask.size(); i++) {
if (outputMask[i] == 1) {
inlierCounter++;
}
}
NSLog(#"Inliers percentage: %d", (int)(((float)inlierCounter / (float)outputMask.size()) * 100));
cv::vector<cv::Point2f> objCorners(4);
objCorners[0] = cv::Point(0,0);
objCorners[1] = cv::Point( objectImageMat1.cols, 0 );
objCorners[2] = cv::Point( objectImageMat1.cols, objectImageMat1.rows );
objCorners[3] = cv::Point( 0, objectImageMat1.rows );
cv::vector<cv::Point2f> scnCorners(4);
cv::perspectiveTransform(objCorners, scnCorners, homography);
cv::line( imageMatches, scnCorners[0] + cv::Point2f( objectImageMat1.cols, 0), scnCorners[1] + cv::Point2f( objectImageMat1.cols, 0), cv::Scalar(0, 255, 0), 4);
cv::line( imageMatches, scnCorners[1] + cv::Point2f( objectImageMat1.cols, 0), scnCorners[2] + cv::Point2f( objectImageMat1.cols, 0), cv::Scalar( 0, 255, 0), 4);
cv::line( imageMatches, scnCorners[2] + cv::Point2f( objectImageMat1.cols, 0), scnCorners[3] + cv::Point2f( objectImageMat1.cols, 0), cv::Scalar( 0, 255, 0), 4);
cv::line( imageMatches, scnCorners[3] + cv::Point2f( objectImageMat1.cols, 0), scnCorners[0] + cv::Point2f( objectImageMat1.cols, 0), cv::Scalar( 0, 255, 0), 4);
[self.mainImageView setImage:[UIImage imageWithCVMat:imageMatches]];
This works, but I keep getting a significant amount of matches, even when the small image is not part of the larger one.
Here's an example for a good output:
And here's an example for a bad output:
Both outputs are the result of the same code. Only difference is the small sample image.
With results like this, it is impossible for me to know when a sample image is NOT in the larger image.
While doing my research, I found this stackoverflow question. I followed the answer given there, and tried the steps suggested in the "OpenCV 2 Computer Vision Application Programming Cookbook" book, but I wasn't able to make it work with images of different sizes (seems like a limitation of the cv::findFundamentalMat function).
What am I missing? Is there a way to use SurfFeatureDetector and FlannBasedMatcher to know when one sample image is a part of a larger image, and another sample image isn't? Is there a different method which is better for that purpose?
UPDATE:
I updated the code above to include the complete function I use, including trying to actually draw the homography. Plus, here are 3 images - 1 scene, and two small objects I'm trying to find in the scene. I'm getting better inlier percentages for the paw icon, and not the twitter icon, which is actually IN the scene. Plus, the homography is not drawn for some reason:
Twitter Icon
Paw Icon
Scene
Your matcher will always match every point from the smaller descriptor list to one of the larger list. You then have to look for yourself which of these matches make sense and which not. You can do this by discarding every match that exceeds a maximum allowed descriptor distance, or you can try to find a transformation matrix (e.g. with findHomography) and check if enough matches correspond to it.
It's a old post , but from a similar assignment I had to do for class. A way to remove the bad output is to check that most of the matching lines are parallel(relatively) to each other, and remove matches that point in wrong directions.