After to calibrated a camera using Jean- Yves Bouget's Camera Calibration Toolbox and checkerboard-patterns printed on cardboard, I´ve obtained extrinsic and intrinsic parameters, I can use the informations to find camera coordinates:
Pc = R * Pw + T
After that, how to obtain the world coordinates of an image using the Pc and calibration parametesr?
thanks in advance.
EDIT
The goal is to use the calibrated camera parameters to measure planar objects with a calibrated Camera). To perform this task i dont know to use the camera parameters. in other words i have to convert the pixels coordinates of the image to world coordinates using the calibrated parameters. I already have the parameters and the new image. How can i do this convertion?
thanks in advance.
I was thinking about problem, and came to the result:
You can't find the object size. The problem is by a single shot, when you have no idea how far the Object is from your camera you can't say something about the size of the object. The calibration just say how far is the image plane from the camera (focal length) and the open angles of the lense. When the focal length changes the calbriation changes too.
But there are some possibiltys:
How to get the real life size of an object from an image, when not knowing the distance between object and the camera?
So how I understand you can approximate the size of the objects.
Your problem can be solved if (and only if) you can express the plane of your object in calibrated camera coordinates.
The calibration procedure outputs, along with the camera intrinsic parameters K, a coordinate transform matrix for every calibration image Qwc_i = [Rwc_i |Twc_i] matrix, that expresses the location and pose of a particular scene coordinate frame in the camera coordinates at that calibration image. IIRC, in Jean-Yves toolbox this is the frame attached to the top-left corner of the calibration checkerboard.
So, if your planar object is on the same plane as the checkerboard in one of the calibration images, all you have to do in order to find its location in space is intersect the checkerboard plane with camera rays cast from the camera center (0,0,0) to the pixels into which the object is imaged.
If your object is NOT in one of those planes, all you can do is infer the object's own plane from additional information, if available, e.g. from a feature of known size and shape.
Related
I am attempting camera calibration from a single RGB image (panorama) given 3D pointcloud
The methods that I have considered all require an intrinsic properties matrix (which I have no access to)
The intrinsic properties matrix can be estimated using the Bouguet’s camera calibration Toolbox, but as I have said, I have a single image only and a single point cloud for that image.
So, knowing 2D image coordinates, extrinsic properties, and 3D world coordinates, how can the intrinsic properties be estimated?
It would seem that the initCameraMatrix2D function from the OpenCV (https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html) works in the same way as the Bouguet’s camera calibration Toolbox and requires multiple images of the same object
I am looking into the Direct linear transformation DLT and Levenberg–Marquardt algorithm with implementations https://drive.google.com/file/d/1gDW9zRmd0jF_7tHPqM0RgChBWz-dwPe1
but it would seem that both use the pinhole camera model and therefore find linear transformation between 3D and 2D points
I can't find my half year old source code, but from top of my head
cx, cy is optical centre which is width/2, height/2 in pixels
fx=fy is focal length in pixels (distance from camera to image plane or axis of rotation)
If you know that image distance from camera to is for example 30cm and it captures image that has 16x10cm and 1920x1200 pixels, size of pixel is 100mm/1200=1/12mm and camera distance (fx,fy) would be 300mm*12px/1mm=3600px and image centre is cx=1920/2=960, cy=1200/2=600. I assume that pixels are square and camera sensor is centered at optical axis.
You can get focal lenght from image size in pixels and measured angle of view.
How can I calculate the distance of an object of known size (e.g. aruco marker of 0.14m printed on paper) from camera. I know the camera matrix (camMatx) and my fx,fy ~= 600px assuming no distortion. From this data I am able to calculate the pose of the aruco marker and have obtained [R|t]. Now the task is to get the distance of the aruco marker from the camera. I also know the height of the camera from ground plane (15m).
How should I go about solving this problem. Any help would be appreciated. Also please note I have also seen approach of similar triangles, but that would work on knowing the distance of the object, which doesnt apply in my case as I have to calculate the distance.
N.B: I dont know the camera sensor height. But I know how high the camera is located above ground.
I know the dimensions of the area in which my object is moving (70m x 45m). In the end I would like to plot the coordinate of the moving object on a 2D map drawn to the scale.
I want to convert the pixel coordinate into real world coordinate. And I found that the ARKit API provide a function in ARCamera call viewMatrix()
Returns a transform matrix for converting from world space to camera
space
It this function can obtain extrinsic matrix for the camera?
This may help:
self.sceneView.session.currentFrame?.camera.transform
The position and orientation of the camera in world coordinate space.
.transform documentation
You can directly extract the eulerAngles from this, but will have to parse the translation yourself.
How come you manually want to project pixels into world positions? (The transform alone isn't going to help you there obviously).
I have two images.
Say one is a 10x10 which we call trainImage and then there is another queryImage which is the same chessboard photographed using a phone camera. Now I have to find the position of camera in (x,y,z) coordinates. Using openCV and feature detection I have been able to identify the chessboard object in photographed object, but how to go ahead with calculating the transformations on chessboard so that I can eventually calculate the position of camera. Any pointers to start looking upon will also be really appreciated. Thanks.
Edit:
Reframing the problem statement again, I have two images trainImage and queryImage. I need to find the position of camera i.e. (x,y,z) if we assume that trainImage is at (0,0,0) in queryImage. I did some reading to find this I need rvec(rotation vector) and tvec(translation vector).
When I use findHomography() function on two images I get a 3x3 homgraphy matrix using which I can find the pixels points(x,y) in queryImage by multiplying to pixel points(x,y) in trainImage. How can I use this homographyMatrix for calculating tvec and rvec.
I want to project a point in 3D space into 2D image coordinates. I have the calibrated intrinsics and extrinsics of the camera I'm using. I have the camera matrix K and distortion coefficients D. However, I want the projected image coordinates to be of the undistorted image.
From my research, I found two ways to do this.
Use opencv's getOptimalNewCameraMatrix function to compute a new undistorted image's camera matrix K'. Then use this K' in opencv's projectPoints function, with the distortion parameters set to 0, to get the projected point.
Use projectPoints function using the raw camera matrix K, along with the distortion coefficients D in this function and get the projected point.
Should the output of both methods match?
I think that there is something missing in your thought.
Camera matrix K and dist. coefficent D are the parameters for make the undistortion (if your lens is distorting the image like in a fisheye). They are what is called intrinsic camera parameters.
If we change terms from computer vision to computer graphics, those parameters are the one you use for defining the frustum of the view, and, for example, they are used for getting the focal length of the camera.
But they are not enough to do the projection stuff.
For the projection, if you think in a computer graphics term (like opengl, for instance) you need to have the model-view-projection matrix. The model matrix is the matrix that specifies the position of the object in the world. The view matrix specifies the position of the camera, and the projection matrix specify the frustum (focal angle, perspective distortion, etc).
If you want to know how to transform the points of the model from 3d to 2d (or viceversa) you need the projection and the view matrixes (you have the model matrix because you have the 3d points from which you want to start). And in computer vision the view matrix is called estrinsic parameters.
So, you need the estrinsic parameters too, that are the position of the camera in the world. That is, for instance, those parameters are the rvec and tvec that cv:: projectPoints needs.
If you want to compute them, they are exactly the output of cv::solvePnP that do the opposite of what you want to do: from some known 3d points coupled with the known 2d projection on them on the camera screen, this function gives you the estrinsic parameters (from which you can get the view matrix for some opengl-opencv-augmented-reality-whatever application via cv::Rodrigues).
Last note: while the instrinsic parameters are fixed in all the pictures you shoot with a camera (while you don't change the focal length of course), the estrinisc parameters changes every time you move the camera for take a new picture from a different view point (that is: this changes the perspective point of view, so the 3D-2D projection you want to find)
Hope could help!