I have the following code which I want to prove:
data Pair (A : Set) (B : A → Set) : Set where
pair : (a : A) → (B a) → Pair A B
pairEq : (A : Set) → (B : A → Set) → (a : A) → (b₁ b₂ : B a) → (pair {A} {B} a b₁ ≡ pair {A} {B} a b₂) → b₁ ≡ b₂
pairEq A B a b₁ b₂ refl = {!!}
How can I prove this is agda? entering refl leads to an error. How can I work this around?
I done it myself:
data Pair (A : Set) (B : A → Set) : Set where
pair : (a : A) → (B a) → Pair A B
pairEq : (A : Set) → (B : A → Set) → (a : A) → (b₁ b₂ : B a) → (pair {A} {B} a b₁ ≡ pair {A} {B} a b₂) → b₁ ≡ b₂
pairEq A B a .b b refl = refl
Related
I was asked to finish one of the recommended question from plfa:
Exercise ⇔≃× (recommended)
Show that A ⇔ B as defined earlier is isomorphic to (A → B) × (B → A).
I know I need to prove some property of equivalence first, and here is my proof:
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
⇔-refl : ∀ {A : Set} → A ⇔ A
⇔-refl =
record
{ to = λ{x → x}
; from = λ{y → y}
}
⇔-sym : ∀ {A B : Set}
→ A ⇔ B
→ B ⇔ A
⇔-sym A⇔B =
record
{ to = _⇔_.from A⇔B
; from = _⇔_.to A⇔B
}
⇔-trans : ∀ {A B C : Set}
→ A ⇔ B
→ B ⇔ C
→ A ⇔ C
⇔-trans A⇔B B⇔C =
record
{ to = (_⇔_.to B⇔C) ∘ (_⇔_.to A⇔B )
; from = (_⇔_.from A⇔B) ∘ (_⇔_.from B⇔C )
}
And now, from my understanding, I need to prove
⇔≃× : ∀ {A B : Set} → A ⇔ B ≃ (A → B) × (B → A)
So to prove this, we need to prove four sections: "to" "from" "from∘to" "to∘from"
⇔≃× : ∀ {A B : Set} → (A ⇔ B) ≃ ((A → B) × (B → A))
⇔≃× =
record
{ to = λ{ x ⇔ y → ⟨ ( x → y ) , ( y → x ) ⟩ }
; from = ?
; from∘to = ?
; to∘from = ?
}
But when I finish the "to" section, I want to see if it can pass. So I compile and I got this error message:
Cannot eliminate type (A → B) × (B → A) with variable pattern ⇔(did you supply too many arguments?)when checking the clause left hand side.extendedlambda2 x ⇔ y
Can anyone give some explanation on this type of error message?
Thanks in advance
λ{ x ⇔ y → binds three arguments: x, ⇔, and y but the function you're supposed to define only takes one.
What is wrong with this code?
EDIT:
I'm sending all the code including dependencies, imports, flags, etc.
I can't figure out where the error might be. I would be very grateful if someone could direct me how to fix this error.
{-# OPTIONS --type-in-type --without-K #-}
module Basic where
Type = Set
data Path {A : Type} : A → A → Type where
id : {M : A} → Path M M
_≃_ : {A : Type} → A → A → Type
_≃_ = Path
infix 9 _≃_
ap : {A B : Type} {M N : A}
(f : A → B) → Path{A} M N → Path{B} (f M) (f N)
ap f id = id
ap≃ : ∀ {A} {B : A → Type} {f g : (x : A) → B x}
→ Path f g → {x : A} → Path (f x) (g x)
ap≃ α {x} = ap (\ f → f x) α
postulate
λ≃ : ∀ {A} {B : A → Type} {f g : (x : A) → B x}
→ ((x : A) → Path (f x) (g x))
I'm getting this error:
Failed to solve the following constraints:
Has bigger sort: _44
piSort _25 (λ _ → Set) = Set
Has bigger sort: _25
Any help?
I didn't get quite the same error, but I got the file to check by annotating A with type Type in the type of λ≃:
postulate
λ≃ : ∀ {A : Type} {B : A → Type} {f g : (x : A) → B x}
→ ((x : A) → Path (f x) (g x))
The error I saw comes about because Agda will usually assume that you might want to use universe polymorphism, and there happens to be nothing else in the type of λ≃ that constrains A to the lowest universe Type.
foldl : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
(∀ {n} → B n → A → B (suc n)) →
B zero →
Vec A m → B m
foldl b _⊕_ n [] = n
foldl b _⊕_ n (x ∷ xs) = foldl (λ n → b (suc n)) _⊕_ (n ⊕ x) xs
When translating the above function to Lean, I was shocked to find out that its true form is actually like...
def foldl : ∀ (P : ℕ → Type a) {n : nat}
(f : ∀ {n}, P n → α → P (n+1)) (s : P 0)
(l : Vec α n), P n
| P 0 f s (nil _) := s
| P (n+1) f s (cons x xs) := foldl (fun n, P (n+1)) (λ n, #f (n+1)) (#f 0 s x) xs
I find it really impressive that Agda is able to infer the implicit argument to f correctly. How is it doing that?
foldl : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
(∀ {n} → B n → A → B (suc n)) →
B zero →
Vec A m → B m
foldl b _⊕_ n [] = n
foldl b _⊕_ n (x ∷ xs) = foldl (λ n → b (suc n)) _⊕_ (_⊕_ {0} n x) xs
If I pass it 0 explicitly as in the Lean version, I get a hint as to the answer. What is going on is that Agda is doing the same thing as in the Lean version, namely wrapping the implicit arg so it is suc'd.
This is surprising as I thought that implicit arguments just means that Agda should provide them on its own. I did not think it would change the function when it is passed as an argument.
Why do function composition (∘) and application ($) have the implementation as available in https://github.com/agda/agda-stdlib/blob/master/src/Function.agda#L74-L76?
Copied here for convenience:
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
_∘'_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(B → C) → (A → B) → (A → C)
f ∘' g = λ x → f (g x)
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
_$'_ : ∀ {a b} {A : Set a} {B : Set b} →
(A → B) → (A → B)
f $' x = f x
I initially thought the rationale behind this was that $ would be able to handle higher order types that $' wouldn't be able to handle. For example, consider A=Nat, B=List, f is ::, where B depends on A. But after a lot of testing, I couldn't come up with an example that would show that the implementation of $' is not sufficient. What scenarios does $ handle that $' isn't able to handle? (Similarly, what scenarios does ∘ handle that ∘' doesn't?
open import Agda.Builtin.Nat public
open import Agda.Primitive public
--data List {a} (A : Set a) : Set a where
-- [] : List A
-- _∷_ : (x : A) (xs : List A) → List A
data Vec {a} (A : Set a) : Nat → Set a where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
tail : ∀ {a n} {A : Set a} → Vec A (suc n) → Vec A n
tail (x ∷ s) = s
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
_$'_ : ∀ {a b} {A : Set a} {B : Set b} →
(A → B) → (A → B)
f $' x = f x
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
_∘'_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(B → C) → (A → B) → (A → C)
f ∘' g = λ x → f (g x)
Vecc : ∀ {a} → Nat → (A : Set a) → (Set a)
Vecc x y = Vec y x
data Pair {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
_,_ : (x : A) → (y : B x) → Pair A B
-- Dependent Pair attempt
--fst : ∀ {a b} {A : Set a} {B : A → Set b} → Pair A B → A
--fst (a , b) = a
--
--f : Pair Nat $' Vec Nat
--f = _,_ zero $' []
--
--g : Pair (Pair Nat $' Vec Nat) $' λ x → Nat
--g = _,_ (_,_ zero $' []) $' zero
-- Some other attempt
--f : ∀ {a n} {A : Set a} → Vec A ((suc ∘' suc) n) → Vec A n
--f {a} = tail {a} ∘' tail {a}
-- Vec attempt
--f : ∀ {a} (A : Set a) → (Set a)
--f {a} = Vecc {a} (suc zero) ∘' Vecc {a} (suc zero)
--
--h = f Nat
--
--x : h
--x = (zero ∷ []) ∷ []
-- List attempt
--f : ∀ {a} (A : Set a) → (Set a)
--f {a} = List {a} ∘' List {a}
--
--g : ∀ {a} (A : Set a) → (Set a)
--g {a} = List {a} ∘ List {a}
--
--h = f Nat
--i = g Nat
--
--x : h
--x = (zero ∷ []) ∷ []
∘′ and $′ don't work with dependent functions. You simply didn't try any tests with dependent functions. For f $ x examples, f must be dependent, for f ∘ g, either of the functions must be dependent. Example:
open import Data.Nat
open import Data.Vec
open import Function
open import Relation.Binary.PropositionalEquality
replicate' : {A : Set} → A → (n : ℕ) → Vec A n
replicate' a n = replicate a
refl' : {A : Set}(a : A) → a ≡ a
refl' a = refl
-- fail1 : Vec ℕ 10
-- fail1 = replicate' 10 $′ 10
ok1 : Vec ℕ 10
ok1 = replicate' 10 $ 10
-- fail2 : ∀ n → replicate' 10 n ≡ replicate' 10 n
-- fail2 = refl' ∘′ replicate' 10
ok2 : ∀ n → replicate' 10 n ≡ replicate' 10 n
ok2 = refl' ∘ replicate' 10
One works with dependent functions, the other doesn't, as Andras Kovacs mentioned.
The important difference is that for non-dependent functions stronger proofs can be constructed. For example:
eq : {A B} -> f : (A -> B) -> x y : A -> x == y -> (f x) == (f y)
eq f x .x refl = refl
Here we can construct equality of f x and f y. But we can't do the same for dependent functions - because there is no way to prove B x == B y. So there is only a weaker proof that f x can be "cast" to f y.
transport : {A} {B : A -> Set} -> f : (x : A -> B x) -> x y : A -> x == y -> f x -> f y
transport f x .x refl fx = fx
(Actually, transport is usually defined as B x -> B y, not for a dependent function; but I just can't come up with a better name)
Recently I made a type for finite sets in Agda with the following implementation:
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Data.Empty
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Data.Nat
suc-inj : (n m : ℕ) → (suc n) ≡ (suc m) → n ≡ m
suc-inj n .n refl = refl
record Eq (A : Set) : Set₁ where
constructor mkEqInst
field
_decide≡_ : (a b : A) → Dec (a ≡ b)
open Eq {{...}}
mutual
data FinSet (A : Set) {{_ : Eq A }} : Set where
ε : FinSet A
_&_ : (a : A) → (X : FinSet A) → .{ p : ¬ (a ∈ X)} → FinSet A
_∈_ : {A : Set} → {{p : Eq A}} → (a : A) → FinSet A → Set
a ∈ ε = ⊥
a ∈ (b & B) with (a decide≡ b)
... | yes _ = ⊤
... | no _ = a ∈ B
_∉_ : {A : Set} → {{p : Eq A}} → (a : A) → FinSet A → Set
_∉_ a X = ¬ (a ∈ X)
decide∈ : {A : Set} → {{_ : Eq A}} → (a : A) → (X : FinSet A) → Dec (a ∈ X)
decide∈ a ε = no (λ z → z)
decide∈ a (b & X) with (a decide≡ b)
decide∈ a (b & X) | yes _ = yes tt
... | no _ = decide∈ a X
decide∉ : {A : Set} → {{_ : Eq A}} → (a : A) → (X : FinSet A) → Dec (a ∉ X)
decide∉ a X = ¬? (decide∈ a X)
instance
eqℕ : Eq ℕ
eqℕ = mkEqInst decide
where decide : (a b : ℕ) → Dec (a ≡ b)
decide zero zero = yes refl
decide zero (suc b) = no (λ ())
decide (suc a) zero = no (λ ())
decide (suc a) (suc b) with (decide a b)
... | yes p = yes (cong suc p)
... | no p = no (λ x → p ((suc-inj a b) x))
However, when I test this type out with the following:
test : FinSet ℕ
test = _&_ zero ε
Agda for some reason can't infer the implicit argument of type ¬ ⊥! However, auto of course finds the proof of this trivial proposition: λ x → x : ¬ ⊥.
My question is this: Since I've marked the implicit proof as irrelevant, why can't Agda simply run auto to find the proof of ¬ ⊥ during type checking? Presumably, whenever filling in other implicit arguments, it might matter exactly what proof Agda finda, so it shouldn't just run auto, but if the proof has been marked irrelevant, like it my case, why can't Agda find a proof?
Note: I have a better implementation of this, where I implement ∉ directly, and Agda can find the relevant proof, but I want to understand in general why Agda can't automatically find these sorts of proofs for implicit arguments. Is there any way in the current implementation of Agda to get these "auto implicits" like I want here? Or is there some theoretical reason why this would be a bad idea?
There's no fundamental reason why irrelevant arguments couldn't be solved by proof search, however the fear is that in many cases it would be slow and/or not find a solution.
A more user-directed thing would be to allow the user to specify that a certain argument should be inferred using a specific tactic, but that has not been implemented either. In your case you would provide a tactic that tries to solve the goal with (\ x -> x).
If you give a more direct definition of ∉, then the implicit argument gets type ⊤ instead of ¬ ⊥. Agda can fill in arguments of type ⊤ automatically by eta-expansion, so your code just works:
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Data.Empty
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Data.Nat
suc-inj : (n m : ℕ) → (suc n) ≡ (suc m) → n ≡ m
suc-inj n .n refl = refl
record Eq (A : Set) : Set₁ where
constructor mkEqInst
field
_decide≡_ : (a b : A) → Dec (a ≡ b)
open Eq {{...}}
mutual
data FinSet (A : Set) {{_ : Eq A}} : Set where
ε : FinSet A
_&_ : (a : A) → (X : FinSet A) → .{p : (a ∉ X)} → FinSet A
_∉_ : {A : Set} → {{p : Eq A}} → (a : A) → FinSet A → Set
a ∉ ε = ⊤
a ∉ (b & X) with (a decide≡ b)
... | yes _ = ⊥
... | no _ = a ∉ X
decide∉ : {A : Set} → {{_ : Eq A}} → (a : A) → (X : FinSet A) → Dec (a ∉ X)
decide∉ a ε = yes tt
decide∉ a (b & X) with (a decide≡ b)
... | yes _ = no (λ z → z)
... | no _ = decide∉ a X
instance
eqℕ : Eq ℕ
eqℕ = mkEqInst decide
where decide : (a b : ℕ) → Dec (a ≡ b)
decide zero zero = yes refl
decide zero (suc b) = no (λ ())
decide (suc a) zero = no (λ ())
decide (suc a) (suc b) with (decide a b)
... | yes p = yes (cong suc p)
... | no p = no (λ x → p ((suc-inj a b) x))
test : FinSet ℕ
test = _&_ zero ε