Getting symbolic values of bit vectors in Z3 - z3

I want to use Z3 for reasoning over bit vectors. In addition with the satisfiability decision I also want the symbolic representations of the bit vectors so that I can apply my own computations on them as needed. For example:
Let,
X[3:0], Y[3:0], Z[4:0] are declared as bit vectors without initializing any value
print X[3:0]
X[3:0] <- X[3:0] >> 1 (logical shift)
print X[3:0]
Z[4:0] <- X[3:0] + Y[3:0]
print Z[4:0]
.......
Desired output (something symbolic like this):
> 2. [x3 x2 x1 x0]
> 4. [0 x3 x2 x1]
> 6. [s4 s3 s2 s1 s0]
Is it possible to have this using Z3?

In general this is not possible. After simplification of the formula, Z3 employs a bit-blaster (translation to Boolean variables) and runs a SAT solver, which (usually) returns exactly one assignment to all the Boolean variables (and thus, after translation, to the bit-vector variables).
The tactic that Z3 employs for QF_BV formulas can be seen here. For some (simple) formulas it may be sufficient to extract the formula after bit-blasting in your case; the Strategies Tutorial describes how to construct and apply such tactics.

Related

What does a model mean in a universally quantified formula? Is it a function?

Consider these two formulae:
Exists y. Forall x. (y>x), which is unsat.
Forall x. Exists y. (y>x), which is sat.
Note that we cannot find “models” for the sat formula, e.g., using Z3 it outputs Z3Exception: model is not available for the following code:
phi = ForAll([x],Exists([y], lit))
s_def = Solver()
s_def.add(phi)
print(s_def.model())
Also, quantifier elimination does not output an elimination, but a satisfiability result
[[]] (i.e., True):
x, y = Reals('x, y')
t = Tactic("qe")
lit = (y>x)
ae = Goal()
ae.add(ForAll([x],Exists([y], lit)))
ae_qe = t(ae)
print(ae_qe)
I think this happens because the value of y fully depends on x (e.g., if x is 5 then y can be 6). Thus, I have some questions:
Am I right with this interpretation?
What would be the meaning of “a model of a universally quantified formula”?
Do we say a formula accepts quantifier elimination even if it never eliminates the quantifier but "only: evaluate to True or False?
Is there a way to synthetise or construct a model/function that represents a y that holds the constraint (y>x); e.g. f(x)=x+1. In other words, does it make sense that the quantifier elimination of a Forall x. Exists y. Phi(x,y) like the example would be Forall x. Phi(x,f(x))?
You get a model-not-available, because you didn't call check. A model is only available after a call to check. Try this:
from z3 import *
x, y = Ints('x y')
phi = ForAll([x], Exists([y], y > x))
s = Solver()
s.add(phi)
print(s.check())
print(s.model())
This prints:
sat
[]
Now, you're correct that you won't get a meaningful/helpful model when you have a universal-quantifier; because the model will depend on the choice of x in each case. (You only get values for top-level existentials.) This is why the model is printed as the empty-list.
Side Note In certain cases, you can use the skolemization trick (https://en.wikipedia.org/wiki/Skolem_normal_form) to get rid of the nested existential and get a mapping function, but this doesn't always work with SMT solvers as they can only build "finite" skolem functions. (For your example, there isn't such a finite function; i.e., a function that can be written as a case-analysis on the inputs, or an if-then-else chain.)
For your specific questions:
Yes; value of y depends on x and thus cannot be displayed as is. Sometimes skolemization will let you work around this, but SMT solvers can only build finite skolem-functions.
Model of a universally quantified formula is more or less meaningless. It's true for all values of the universally quantified variables. Only top-level existentials are meaningful in a model.
Quantifier elimination did work here; it got rid of the whole formula. Note that QE preserves satisfiability; so it has done its job.
This is the skolem function. As you noted, this skolem function is not finite (can't be written as a chain of finite if-then-elses on concrete values), and thus existing SMT solvers cannot find/print them for you. If you try, you'll see that the solver simply loops:
from z3 import *
x = Int('x')
skolem = Function('skolem', IntSort(), IntSort())
phi = ForAll([x], skolem(x) > x)
s = Solver()
s.add(phi)
print(s)
print(s.check())
print(s.model())
The above never terminates, unfortunately. This sort of problem is simply too complicated for the push-button approach of SMT solving.

Clarification SMT types; bug in variable truncation?; allowing Bool*Int

I have the following questions:
A. If I have a variable x which I declare it (case 1) to be Bool (case 2) to be Int and assert x=0 or x=1 (case 3) to be Int and assert 0<=x<=1. What happens in Z3, or more generally in SMT, in each of the cases? Is, (case 1) desired since things happen at SAT and not SMT level? Do you have some reference paper here?
B. I have the following statement in Python (for using Z3 Python API)
tmp.append(sum([self.a[i * self.nrVM + k] * componentsRequirements[i][1] for i
in range(self.nrComp)]) <= self.MemProv[k])
where a is declared as a Z3 Int variable (0 or 1), componentsRequirements is a Python variable which is to be considered float, self.MemProv is declared as a Z3 Real variable.
The strange thing is that for float values for componentsRequirements, e.g 0.5, the constraint built by the solver considers it 0 and not 0.5. For example in:
(assert (<= (to_real (+ 0 (* 0 C1_VM2)
(* 0 C2_VM2)
(* 2 C3_VM2)
(* 2 C4_VM2)
(* 3 C5_VM2)
(* 1 C6_VM2)
(* 0 C7_VM2)
(* 2 C8_VM2)
(* 1 C9_VM2)
(* 2 C10_VM2)))
StorageProv2))
the 0 above should be actually 0.5. When changing a to a Real value then floats are considered, but this is admitted by us because of the semantics of a. I tried to use commutativity between a and componentsRequirements but with no success.
C. If I'd like to use x as type Bool and multiply it by an Int, I get, of course, an error (Bool*Real/Int not allowed), in Z3. Is there a way to overcome this problem but keeping the types of both multipliers? An example in this sense is the above (a - Bool, componentsRequirements - Real/Int):
a[i * self.nrVM + k] * componentsRequirements[i][1]
Thanks
Regarding A
Patrick gave a nice explanation for this one. In practice, you really have to try and see what happens. Different problems might exhibit different behavior due to when/how heuristics kick in. I don't think there's a general rule of thumb here. My personal preference would be to keep booleans as booleans and convert as necessary, but that's mostly from a programming/maintenance perspective, not an efficiency one.
Regarding B
Your "division" getting truncated problem is most likely the same as this: Retrieve a value in Z3Py yields unexpected result
You can either be explicit and write 1.0/2.0 etc.; or use:
from __future__ import division
at the top of your program.
Regarding C
SMTLib is a strongly typed language; you cannot multiply by a bool. You have to convert it to a number first. Something like (* (ite b 1 0) x), where b is your boolean. Or you can write a custom function that does this for you and call that instead; something like:
(define-fun mul_bool_int ((b Bool) (i Int)) Int (ite b i 0))
(assert (= 0 (mul_bool_int false 5)))
(assert (= 5 (mul_bool_int true 5)))
I honestly can't answer for z3 specifically, but I want to state my opinion on point A).
In general, the constraint x=0 v x=1 is abstracted into t1 v t2, where t1 is x=0 and t2 is x=1, at the SAT engine level.
Thus, the SAT engine might try to assign both t1 and t2 to true during the construction of a satisfiable truth assignment for the input formula. It is important to note that this is a contradiction in the theory of LAR, but the SAT engine is not capable of such reasoning. Therefore, the SAT engine might continue its search for a while after taking this decision.
When the LAR Solver is finally invoked, it will detect the LAR-unsatisfiability of the given (possibly partial) truth assignment. As a consequence, it (should) hand the clause not t1 or not t2 to the SAT engine as learning clause so as to block the bad assignment of values to be generated again.
If there are many of such bad assignments, it might require multiple calls to the LAR Solver so as to generate all blocking clauses that are needed to rectify the SAT truth assignment, possibly up to one for each of those bad combinations.
Upon receiving the conflict clause, the SAT engine will have to backjump to the place where it made the bad assignment and do the right decision. Obviously, not all the work done by the SAT engine since it made the bad assignment of values gets wasted: any useful clause that was learned in the meanwhile will certainly be re-used. However, this can still result in a noticeable performance hit on some formulas.
Compare all of this back-and-forth computation being wasted with simply declaring x as a Bool: now the SAT engine knows that it can only assign one of two values to it, and won't ever assign x and not x contemporarily.
In this specific situation, one might mitigate this problem by providing the necessary blocking clauses right into the input formula. However, it is not trivial to conclude that this is always the best practice: explicitly listing all known blocking clauses might result in an explosion of the formula size in some situations, and into an even worse degradation of performance in practice. The best advice is to try different approaches and perform an experimental evaluation before settling for any particular encoding of a problem.
Disclaimer: it is possible that some SMT solvers are smarter than others, and automatically generate appropriate blocking clauses for 0/1 variables upon parsing the formula or avoid this situation altogether through other means (i.e. afaik, Model-Based SMT solvers shouldn't incur in the same problem)

partial assignments in Z3

I have a Boolean formula (format: CNF) whose satisfiablity I check using the Z3 SAT solver. I am interested in obtaining partial assignments when the formula is satisfiable. I tried model.partial=true on a simple formula for an OR gate and did not get any partial assignment.
Can you suggest how this can be done? I have no constraints on the assignment other than that it be partial.
Z3's partial model mode are just for models of functions. For propositional formulas there is no assurance that models use a minimal number of assignments. On the contrary, the default mode of SAT solvers is that they find complete assignments.
Suppose you are interested in a minimized number of literals, such that the conjunction of the literals imply the formula. You can use unsat cores to get such subsets. The idea is that you first find a model of your formula F as a conjunction of literals l1, l2, ..., ln. Then given that this is a model of F we have that l1 & l2 & ... & ln & not F is unsatisfiable.
So the idea is to assert "not F" and check satisfiability of "not F" modulo assumptions l1, l2, .., ln. Since the result is unsat, you can query Z3 to retrieve an unsat core among l1, l2, .., ln.
From python what you would do is to create two solver objects:
s1 = Solver()
s2 = Solver()
Then you add F, respectively, Not(F):
s1.add(F)
s2.add(Not(F))
then you find a reduced model for F using both solvers:
is_Sat = s1.check()
if is_Sat != sat:
# do something else, return
m = s1.model()
literals = [sign(m, m[idx]()) for idx in range(len(m)) ]
is_sat = s2.check(literals)
if is_Sat != unsat:
# should not happen
core = s2.unsat_core()
print core
where
def sign(m, c):
val = m.eval(c)
if is_true(val):
return c
else if is_false(val):
return Not(c)
else:
# should not happen for propositional variables.
return BoolVal(True)
There are of course other ways to get reduced set of literals. A partial cheap way is to eagerly evaluate each clause and add literals from the model until each clause is satisfied by at least one literal in the model. In other words, you are looking for a minimal hitting set. You would have to implement this outside of Z3.

Z3: How to best encode a "switch statement"?

I want to create an expression that selects one of a given set of expressions. Given an array of expressions
Expr[] availableExprs = ...;
with statically known length, I want Z3 to select any one of these (like a switch statement). In case the problem is SAT I need a way to find out which of these was selected in the model (its index in the array).
What is the fastest way to encode this?
I considered these approaches so far:
Have an integer restricted to [0, arrayLength) and use ITE to select one of those expressions. The model allows me to extract this integer. Unfortunately, this introduces the integer theory to the model (which previously did not use integers at all).
Have one boolean for each possible choice. Use ITE to select an expression. Assert that exactly one of those booleans is true. This strategy does not need any special theory (I think) but the encoding might be too verbose.
Store the expressions into an array expression and read from that array using an integer. This saves the ITE chain but introduces the array theory.
Clearly, all of these work, but they all seem to have drawbacks. What is the best strategy?
If all you want is to encode is that an element v is in a finite set {e1, ..., en} (with sort U), you can do this using smtlib2 as follows:
(declare-fun v () U)
(declare-fun p1 () Bool)
...
(assert (= p1 (= v e1)))
(assert (= p2 (= v e2)))
...
(assert (= pn (= v en)))
(assert (or p1 ... pn))
The variable v will be equal to one of the elements in "the array" of {e1 ... en}. And pi must be true if the selection variable v is equal to ei. This is basically a restatement of Nikolaj's suggestion, but recast for arbitrary sorts.
Note that multiple pi may be set to true as there is no guarantee ei != ej. If you need to ensure no two elements are both selected, you will need to figure out what semantics you want. If the {e1... en} are already entailed to be distinct, you don't need to add anything. If the "array" elements must be distinct but are not yet entailed to be distinct, you can assert
(assert (distinct e1 ... en))
(This will probably be internally expanded to something quadratic in n.)
You can instead say that no 2 p variables can be true as once. Note that this is a weaker statement. To see this, suppose v = e1 = 1 and e2 = e3 = 0. Then p1 = true and p2 = p3 = false. The obvious encoding for these constraints is quadratic:
(assert (or (not pi) (not pj))) ; for all i < j
If you need a better encoding for this, try taking a look at how to encode "p1+ ... + pn <= 1" in Translating Pseudo-Boolean Constraints into SAT section 5.3. I would only try this if the obvious encoding fails though.
I think you want to make sure that each expression is quantifier free and uses only functions and predicates already present in the formula. If this is not the case then introduce a fresh propositional variable p_i for each index and assert ctx.MkIff(p_i, availableExprs[i]) to the solver.
When Z3 produces a model, use model.Eval(p_i) and check if the result is the expression "True".

Asymmetric behavior in ctx-solver-simplify

I'm seeing rather surprising behavior from ctx-solver-simplify, where the order of parameters to z3.And() seems to matter, using the latest version of Z3 from the master branch of https://git01.codeplex.com/z3 (89c1785b):
#!/usr/bin/python
import z3
a, b = z3.Bools('a b')
p = z3.Not(a)
q = z3.Or(a, b)
for e in z3.And(p, q), z3.And(q, p):
print e, '->', z3.Tactic('ctx-solver-simplify')(e)
produces:
And(Not(a), Or(a, b)) -> [[Not(a), Or(a, b)]]
And(Or(a, b), Not(a)) -> [[b, Not(a)]]
Is this a bug in Z3?
No, this is not a bug. The tactic ctx-solver-simplify is very expensive and inherently asymmetric. That is, the order the sub-formulas are visited affect the final result. This tactic is implemented in the file src/smt/tactic/ctx_solver_simplify_tactic.cpp. The code is quite readable. Note that, it uses a "SMT" solver (m_solver), and makes several calls to m_solver.check() while traversing the input formula. Each one of these calls can be quite expensive. For particular problem domains, we can implement a version of this tactic that is even more expensive, and avoids the asymmetry described in your question.
EDIT:
You may also consider the tactic ctx-simplify, it is cheaper than ctx-solver-simplify, but it is symmetric. The tactic ctx-simplify will essentially applies rules such as:
A \/ F[A] ==> A \/ F[false]
x != c \/ F[x] ==> F[c]
Where F[A] is a formula that may contain A. It is cheaper than ctx-solver-simplify because it does not invoke a SMT solver when it is traversing the formula. Here is an example using this tactic (also available online):
a, b = Bools('a b')
p = Not(a)
q = Or(a, b)
c = Bool('c')
t = Then('simplify', 'propagate-values', 'ctx-simplify')
for e in Or(c, And(p, q)), Or(c, And(q, p)):
print e, '->', t(e)
Regarding humand-readability, this was never a goal when implementing any tactic. Please, tell us if the tactic above is not good enough for your purposes.
I think it will be better to write a custom tactic because there are
other tradeoffs when you essentially ask for canonicity.
Z3 does not have any tactics that convert formulas into a canonical form.
So if you want something that always produces the same answer for formulas
that are ground equivalent you will have to write a new normalizer that
ensures this.
The ctx_solver_simplify_tactic furthermore makes some tradeoffs when simplifying formulas:
it avoids simplifying the same sub-formula multiple times. If it did, it could increase
the size of the resulting formula significantly (exponentially).

Resources