modeling feature set with text documents - machine-learning

Example:
I have m sets of ~1000 text documents, ~10 are predictive of a binary result, roughly 990 aren't.
I want to train a classifier to take a set of documents and predict the binary result.
Assume for discussion that the documents each map the text to 100 features.
How is this modeled in terms of training examples and features? Do I merge all the text together and map it to a fixed set of features? Do I have 100 features per document * ~1000 documents (100,000 features) and one training example per set of documents? Do I classify each document separately and analyze the resulting set of confidences as they relate to the final binary prediction?

The most common way to handle text documents is with a bag of words model. The class proportions are irrelevant. Each word gets mapped to a unique index. Make the value at that index equal to the number of times that token occurs (there are smarter things to do). The number of features/dimension is then the number of unique tokens/words in your corpus. There are manny issues with this, and some of them are discussed here. But it works well enough for many things.

I would want to approach it as a two stage problem.
Stage 1: predict the relevancy of a document from the set of 1000. For best combination with stage 2, use something probabilistic (logistic regression is a good start).
Stage 2: Define features on the output of stage 1 to determine the answer to the ultimate question. These could be things like the counts of words for the n most relevant docs from stage 1, the probability of the most probable document, the 99th percentile of those probabilities, variances in probabilities, etc. Whatever you think will get you the correct answer (experiment!)
The reason for this is as follows: concatenating documents together will drown you in irrelevant information. You'll spend ages trying to figure out which words/features allow actual separation between the classes.
On the other hand, if you concatenate feature vectors together, you'll run into an exchangeability problem. By that I mean, word 1 in document 1 will be in position 1, word 1 in document 2 will be in position 1001, in document 3 it will be in position 2001, etc. and there will be no way to know that the features are all related. Furthermore, an alternate presentation of the order of the documents would lead to the positions in the feature vector changing its order, and your learning algorithm won't be smart to this. Equally valid presentations of the document orders will lead to completely different results in an entirely non-deterministic and unsatisfying way (unless you spend a long time designing a custom classifier that's not afficted with this problem, which might ultimately be necessary but it's not the thing I'd start with).

Related

Classifying pattern in time series

I am dealing with a repeating pattern in time series data. My goal is to classify every pattern as 1, and anything that does not follow the pattern as 0. The pattern repeats itself between every two peaks as shown below in the image.
The patterns are not necessarily fixed in sample size but stay within approximate sample size, let's say 500samples +-10%. The heights of the peaks can change. The random signal (I called it random, but basically it means not following pattern shape) can also change in value.
The data is from a sensor. Patterns are when the device is working smoothly. If the device is malfunctioning, then I will not see the patterns and will get something similar to the class 0 I have shown in the image.
What I have done so far is building a logistic regression model. Here are my steps for data preparation:
Grab data between every two consecutive peaks, resample it to a fixed size of 100 samples, scale data to [0-1]. This is class 1.
Repeated step 1 on data between valley and called it class 0.
I generated some noise, and repeated step 1 on chunk of 500 samples to build extra class 0 data.
Bottom figure shows my predictions on the test dataset. Prediction on the noise chunk is not great. I am worried in the real data I may get even more false positives. Any idea on how I can improve my predictions? Any better approach when there is no class 0 data available?
I have seen similar question here. My understanding of Hidden Markov Model is limited but I believe it's used to predict future data. My goal is to classify a sliding window of 500 sample throughout my data.
I have some proposals, that you could try out.
First, I think in this field often recurrent neural networks are used (e.g. LSTMs). But I also heard that some people also work with tree based method like light gbm (I think Aileen Nielsen uses this approach).
So if you don't want to dive into neural networks, which is probably not necessary, because your signals seem to be distinguishable relative easily, you can give light gbm (or other tree ensamble methods) a chance.
If you know the maximum length of a positive sample, you can define the length of your "sliding sample-window" that becomes your input vector (so each sample in the sliding window becomes one input feature), then I would add an extra attribute with the number of samples when the last peak occured (outside/before the sample window). Then you can check in how many steps you let your window slide over the data. This also depends on the memory you have available for this.
But maybe it would be wise then to skip some of the windows between a change between positive and negative, because the states might not be classifiable unambiguously.
In case memory becomes an issue, neural networks could be the better choice, because for training they do not need all training data available at once, so you can generate your input data in batches. With tree based methods this possible does not exist or only in a very limited way.
I'm not sure of what you are trying to achieve.
If you want to characterize what is a peak or not - which is an after the facts classification - then you can use a simple rule to define peaks such as signal(t) - average(signal, t-N to t) > T, with T a certain threshold and N a number of data points to look backwards to.
This would qualify what is a peak (class 1) and what is not (class 0), hence does a classification of patterns.
If your goal is to predict that a peak is going to happen few time units before the peak (on time t), using say data from t-n1 to t-n2 as features, then logistic regression might not necessarily be the best choice.
To find the right model you have to start with visualizing the features you have from t-n1 to t-n2 for every peak(t) and see if there is any pattern you can find. And it can be anything:
was there a peak in in the n3 days before t ?
is there a trend ?
was there an outlier (transform your data into exponential)
in order to compare these patterns, think of normalizing them so that the n2-n1 data points go from 0 to 1 for example.
If you find a pattern visually then you will know what kind of model is likely to work, on which features.
If you don't then it's likely that the white noise you added will be as good. so you might not find a good prediction model.
However, your bottom graph is not so bad; you have only 2 major false positives out of >15 predictions. This hints at better feature engineering.

Word Embedding Model

I have been searching and attempting to implement a word embedding model to predict similarity between words. I have a dataset made up 3,550 company names, the idea is that the user can provide a new word (which would not be in the vocabulary) and calculate the similarity between the new name and existing ones.
During preprocessing I got rid of stop words and punctuation (hyphens, dots, commas, etc). In addition, I applied stemming and separated prefixes with the hope to get more precision. Then words such as BIOCHEMICAL ended up as BIO CHEMIC which is the word divided in two (prefix and stem word)
The average company name length is made up 3 words with the following frequency:
The tokens that are the result of preprocessing are sent to word2vec:
#window: Maximum distance between the current and predicted word within a sentence
#min_count: Ignores all words with total frequency lower than this.
#workers: Use these many worker threads to train the model
#sg: The training algorithm, either CBOW(0) or skip gram(1). Default is 0s
word2vec_model = Word2Vec(prepWords,size=300, window=2, min_count=1, workers=7, sg=1)
After the model included all the words in the vocab , the average sentence vector is calculated for each company name:
df['avg_vector']=df2.apply(lambda row : avg_sentence_vector(row, model=word2vec_model, num_features=300, index2word_set=set(word2vec_model.wv.index2word)).tolist())
Then, the vector is saved for further lookups:
##Saving name and vector values in file
df.to_csv('name-submission-vectors.csv',encoding='utf-8', index=False)
If a new company name is not included in the vocab after preprocessing (removing stop words and punctuation), then I proceed to create the model again and calculate the average sentence vector and save it again.
I have found this model is not working as expected. As an example, calculating the most similar words pet is getting the following results:
ms=word2vec_model.most_similar('pet')
('fastfood', 0.20879755914211273)
('hammer', 0.20450574159622192)
('allur', 0.20118337869644165)
('wright', 0.20001833140850067)
('daili', 0.1990675926208496)
('mgt', 0.1908089816570282)
('mcintosh', 0.18571510910987854)
('autopart', 0.1729743778705597)
('metamorphosi', 0.16965581476688385)
('doak', 0.16890916228294373)
In the dataset, I have words such as paws or petcare, but other words are creating relationships with pet word.
This is the distribution of the nearer words for pet:
On the other hand, when I used the GoogleNews-vectors-negative300.bin.gz, I could not add new words to the vocab, but the similarity between pet and words around was as expected:
ms=word2vec_model.most_similar('pet')
('pets', 0.771199643611908)
('Pet', 0.723974347114563)
('dog', 0.7164785265922546)
('puppy', 0.6972636580467224)
('cat', 0.6891531348228455)
('cats', 0.6719794869422913)
('pooch', 0.6579219102859497)
('Pets', 0.636363685131073)
('animal', 0.6338439583778381)
('dogs', 0.6224827170372009)
This is the distribution of the nearest words:
I would like to get your advice about the following:
Is this dataset appropriate to proceed with this model?
Is the length of the dataset enough to allow word2vec "learn" the relationships between the words?
What can I do to improve the model to make word2vec create relationships of the same type as GoogleNews where for instance word pet is correctly set among similar words?
Is it feasible to implement another alternative such as fasttext considering the nature of the current dataset?
Do you know any public dataset that can be used along with the current dataset to create those relationships?
Thanks
3500 texts (company names) of just ~3 words each is only around 10k total training words, with a much smaller vocabulary of unique words.
That's very, very small for word2vec & related algorithms, which rely on lots of data, and sufficiently-varied data, to train-up useful vector arrangements.
You may be able to squeeze some meaningful training from limited data by using far more training epochs than the default epochs=5, and far smaller vectors than the default size=100. With those sorts of adjustments, you may start to see more meaningful most_similar() results.
But, it's unclear that word2vec, and specifically word2vec in your averaging-of-a-name's-words comparisons, is matched to your end goals.
Word2vec needs lots of data, doesn't look at subword units, and can't say anything about word-tokens not seen during training. An average-of-many-word-vectors can often work as an easy baseline for comparing multiword texts, but might also dilute some word's influence compared to other methods.
Things to consider might include:
Word2vec-related algorithms like FastText that also learn vectors for subword units, and can thus bootstrap not-so-bad guess vectors for words not seen in training. (But, these are also data hungry, and to use on a small dataset you'd again want to reduce vector size, increase epochs, and additionally shrink the number of buckets used for subword learning.)
More sophisticated comparisons of multi-word texts, like "Word Mover's Distance". (That can be quite expensive on longer texts, but for names/titles of just a few words may be practical.)
Finding more data that's compatible with your aims for a stronger model. A larger database of company names might help. If you just want your analysis to understand English words/roots, more generic training texts might work too.
For many purposes, a mere lexicographic comparison - edit distances, count of shared character-n-grams – may be helpful too, though it won't detect all synonyms/semantically-similar words.
Word2vec does not generalize to unseen words.
It does not even work well for wards that are seen but rare. It really depends on having many many examples of word usage. Furthermore a you need enough context left and right, but you only use company names - these are too short. That is likely why your embeddings perform so poorly: too little data and too short texts.
Hence, it is the wrong approach for you. Retraining the model with the new company name is not enough - you still only have one data point. You may as well leave out unseen words, word2vec cannot work better than that even if you retrain.
If you only want to compute similarity between words, probably you don't need to insert new words in your vocabulary.
By eye, I think you can also use FastText without the need to stem the words. It also computes vectors for unknown words.
From FastText FAQ:
One of the key features of fastText word representation is its ability
to produce vectors for any words, even made-up ones. Indeed, fastText
word vectors are built from vectors of substrings of characters
contained in it. This allows to build vectors even for misspelled
words or concatenation of words.
FastText seems to be useful for your purpose.
For your task, you can follow FastText supervised tutorial.
If your corpus proves to be too small, you can build your model starting from availaible pretrained vectors (pretrainedVectors parameter).

XGBoost: minimize influence of continuous linear features as opposed to categorical

Lets say I have 100 independent features - 90 are binary (e.g. 0/1) and 10 are continuous variables (e.g. age, height, weight, etc). I use the 100 features to predict a classifier problem with an adequate amount of samples.
When I set a XGBClassifier function and fit it, then the 10 most important features from the standpoint of gain are always the 10 continuous variable. For now I am not interested in cover or frequency. The 10 continuous variables take up like .8 to .9 of space in gain list ( sum(gain) = 1).
I tried tuning the gamma, reg_alpha , reg_lambda , max_depth, colsample. Still top 10 features by gain are always the 10 continuous features.
Any suggestions?
small update -- someone asked why I think this is happening. I believe it's because a continuous variable can be split on multiple times per decision tree. A binary variable can only be split on once. Hence, the higher prevalence of continuous variables in trees and thus a higher gain score
Yes, it's well-known that a tree(/forest) algorithm (xgboost/rpart/etc.) will generally 'prefer' continuous variables over binary categorical ones in its variable selection, since it can choose the continuous split-point wherever it wants to maximize the information gain (and can freely choose different split-points for that same variable at other nodes, or in other trees). If that's the optimal tree (for those particular variables), well then it's the optimal tree. See Why do Decision Trees/rpart prefer to choose continuous over categorical variables? on sister site CrossValidated.
When you say "any suggestions", depends what exactly do you want, it could be one of the following:
a) To find which of the other 90 binary categorical features give the most information gain
b) To train a suboptimal tree just to find out which features those are
c) To engineer some "compound" features by combining the binary features into n-bit categorical features which have more information gain (while being sure to remove the individual binary features from the input)
d) You could look into association rules : What is the practical difference between association rules and decision trees in data mining?
If you want to explore a)...c), suggest something vaguely like this:
exclude various subsets of the 10 continuous variables, then see which binary features show up as having the most gain. Let's say that gives you N candidate features. N will be << 90, let's assume N < 20 to make the following more computationally efficient.
then compute the pairwise measure of association or correlation (Spearman or Kendall) between each of the N features. Look at a corrplot. Pick the clusters of variables which are most associated with each other. Create compound n-bit variables which combine those individual binary features. Then retrain the tree, including the compound variables, and excluding the individual binary variables (to avoid changing the total variance in the input).
iterate for excluding various subsets of the 10 continuous variables. See which patterns emerge in your compound variables. I'm sure there's an algorithm for doing this (compound feature-engineering of n-bit categoricals) more formally and methodically, I just don't know it.
Anyway, for hacking a tree-based method for better performance, I imagine the most naive way is "at every step, pick the two most highly-correlated/associated categorical features and combine them". Then retrain the tree (include new feature, exclude its constituent features) and use the revised gain numbers.
perhaps a more robust way might be:
Pick some threshold T for correlation/association, say start at a high level T = 0.9 or 0.95
At each step, merge any features whose absolute correlation/association to each other >= T
If there were no merges at this step, reduce T by some value (like T -= 0.05) or ratio (e.g. T *= 0.9 . If still no merges, keep reducing T until there are merges, or until you hit some termination value (e.g. T = 0.03)
Retrain the tree including the compound variables, excluding their constituent subvariables.
Now go back and retrain what should be an improved tree with all 10 continuous variables, and your compound categorical features.
Or you could early-terminate the compound feature selection to see what the full retrained tree looks like.
This issue arose in the 2014 Kaggle Allstate Purchase Prediction Challenge, where the policy coverage options A,B,C,D,E,F,G were each categoricals with between 2-4 values, and very highly correlated with each other. (The current option of C, "C_previous", is one of the input features). See that competitions's forums and published solutions for more. Be aware that policy = (A,B,C,D,E,F,G) is the output. But C_previous is an input variable.
Some general fast-and-dirty rules-of-thumb on feature selection from Kaggle are:
throw out any near-constant/ very-low-variance variables (because they have near-zero information content)
throw out any very-high-cardinality categorical variables (cardinality >~ training-set-size/2), (because they will also tend to have low information content, but cause lots of spurious overfitting and blow up training time). This can include customer IDs, row IDs, transaction IDs, sequence IDs, and other variables which shouldn't be trained on in the first place but accidentally ended up in the training set.
I can suggest few things for you to try.
Test your model without this data (only 90 features) and evaluate the decrease in your score. If it's insignificant you might want to remove those features.
Turn them into groups.
For example, age can be categorized into groups, 0 : 0-7, 1 : 8-16, 2 : 17-25 and so on.
Turn them into binary. Out of the box idea on how to chose the best value to split them into binary is: Build 1 tree with 1 node (max depth = 1) and use only 1 feature. (1 out of the continuous features). then, dump the model to a .txt file and see the value it chose to split on. using this value, you can transform all that feature column into binary
I'm dealing myself with very similar problems right now, So i'll be happy to hear your results and the paths you chose to try.
I learned a lot from the answer by #smci, so I would recommend to follow his suggestions.
In the case, when your binary categorical features are in fact OHE representations of several categorical features with several classes in each, you can follow two more approaches:
Convert OHE into label encoding. Yes, this has the caveat that one introduces an order into a categorical features, which might be meaningless, for example green=3 > red=2 > blue=1. But in practice is seems that trees handle label=encoded categorical variables (even with meaningless order) reasonably well.
Convert OHE into target-/mean-/likelihood encoding. This is tricky, because you need to apply regularisation to avoid data leakage.
Both of those ideas are meant to group together several binary features into a single one based on prior knowledge about feature meaning. If you do not have that luxury, you can also try to deduce such groups by doing scalar product of columns and finding those giving zero product.

How to classify text with Knime

I'm trying to classify some data using knime with knime-labs deep learning plugin.
I have about 16.000 products in my DB, but I have about 700 of then that I know its category.
I'm trying to classify as much as possible using some DM (data mining) technique. I've downloaded some plugins to knime, now I have some deep learning tools as some text tools.
Here is my workflow, I'll use it to explain what I'm doing:
I'm transforming the product name into vector, than applying into it.
After I train a DL4J learner with DeepMLP. (I'm not really understand it all, it was the one that I thought I got the best results). Than I try to apply the model in the same data set.
I thought I would get the result with the predicted classes. But I'm getting a column with output_activations that looks that gets a pair of doubles. when sorting this column I get some related date close to each other. But I was expecting to get the classes.
Here is a print of the result table, here you can see the output with the input.
In columns selection it's getting just the converted_document and selected des_categoria as Label Column (learning node config). And in Predictor node I checked the "Append SoftMax Predicted Label?"
The nom_produto is the text column that I'm trying to use to predict the des_categoria column that it the product category.
I'm really newbie about DM and DL. If you could get me some help to solve what I'm trying to do would be awesome. Also be free to suggest some learning material about what attempting to achieve
PS: I also tried to apply it into the unclassified data (17,000 products), but I got the same result.
I won't answer with a workflow on this one because it is not going to be a simple one. However, be sure to find the text mining example on the KNIME server, i.e. the one that makes use of the bag of words approach.
The task
Product mapping to categories should be a straight-forward data mining task because the information that explains the target variable is available in a quasi-exhaustive manner. Depending on the number of categories to train though, there is a risk that you might need more than 700 instances to learn from.
Some resources
Here are some resources, only the first one being truly specialised in text mining:
Introduction on Information Retrieval, in particular chapter 13;
Data Science for Business is an excellent introduction to data mining, including text mining (chapter 10), also do not forget the chapter about similarity (chapter 6);
Machine Learning with R has the advantage of being accessible enough (chapter 4 provides an example of text classification with R code).
Preprocessing
First, you will have to preprocess your product labels a bit. Use KNIME's text analytics preprocessing nodes for that purpose, that is after you've transformed the product labels with Strings to Document:
Case Convert, Punctuation Erasure and Snowball Stemmer;
you probably won't need Stop Word Filter, however, there may be quasi-stop words such as "product", which you may need to remove manually with Dictionary Filter;
Be careful not to use any of the following without testing testing their impact first: N Chars Filter (g may be a useful word), Number Filter (numbers may indicate quantities, which may be useful for classification).
Should you encounter any trouble with the relevant nodes (e.g. Punctuation Erasure can be tricky amazingly thanks to the tokenizer), you can always apply String Manipulation with regex before converting the Strings to Document.
Keep it short and simple: the lookup table
You could build a lookup table based on the 700 training instances. The book Data mining techniques as well as resource (2) present this approach in some detail. If any model performs any worse than the lookup table, you should abandon the model.
Nearest neighbors
Neural networks are probably overkill for this task.
Start with a K Nearest Neighbor node (applying a string distance such as Cosine, Levensthein or Jaro-Winkler). This approach requires the least amount of data wrangling. At the very least, it will provide an excellent baseline model, so it is most definitely worth a shot.
You'll need to tune the parameter k and to experiment with the distance types. The Parameter Optimization Loop pair will help you with optimizing k, you can include a Cross-Validation meta node inside of the said loop to obtain an estimate of the expected performance given k instead of only one point estimate per value of k. Use Cohen's Kappa as an optimization criterion, as proposed by the resource number (3) and available via the Scorer node.
After the parameter tuning, you'll have to evaluate the relevance of your model using yet another Cross-Validation meta node, then follow up with a Loop pair including Scorer to calculate the descriptives on performance metric(s) per iteration, finally use Statistics. Kappa is a convenient metric for this task because the target variable consists of many product categories.
Don't forget to test its performance against the lookup table.
What next ?
Should lookup table or k-nn work well for you, then there's nothing else to add.
Should any of those approaches fail, you might want to analyse the precise cases on which it fails. In addition, training set size may be too low, so you could manually classify another few hundred or thousand instances.
If after increasing the training set size, you are still dealing with a bad model, you can try the bag of words approach together with a Naive Bayes classifier (see chapter 13 of the Information Retrieval reference). There is no room here to elaborate on the bag of words approach and Naive Bayes but you'll find the resources here above useful for that purpose.
One last note. Personally, I find KNIME's Naive Bayes node to perform poorly, probably because it does not implement Laplace smoothening. However, KNIME's R Learner and R Predictor nodes will allow you to use R's e1071 package, as demonstrated by resource (3).

What type of ML is this? Algorithm to repeatedly choose 1 correct candidate from a pool (or none)

I have a set of 3-5 black box scoring functions that assign positive real value scores to candidates.
Each is decent at ranking the best candidate highest, but they don't always agree--I'd like to find how to combine the scores together for an optimal meta-score such that, among a pool of candidates, the one with the highest meta-score is usually the actual correct candidate.
So they are plain R^n vectors, but each dimension individually tends to have higher value for correct candidates. Naively I could just multiply the components, but I hope there's something more subtle to benefit from.
If the highest score is too low (or perhaps the two highest are too close), I just give up and say 'none'.
So for each trial, my input is a set of these score-vectors, and the output is which vector corresponds to the actual right answer, or 'none'. This is kind of like tech interviewing where a pool of candidates are interviewed by a few people who might have differing opinions but in general each tend to prefer the best candidate. My own application has an objective best candidate.
I'd like to maximize correct answers and minimize false positives.
More concretely, my training data might look like many instances of
{[0.2, 0.45, 1.37], [5.9, 0.02, 2], ...} -> i
where i is the ith candidate vector in the input set.
So I'd like to learn a function that tends to maximize the actual best candidate's score vector from the input. There are no degrees of bestness. It's binary right or wrong. However, it doesn't seem like traditional binary classification because among an input set of vectors, there can be at most 1 "classified" as right, the rest are wrong.
Thanks
Your problem doesn't exactly belong in the machine learning category. The multiplication method might work better. You can also try different statistical models for your output function.
ML, and more specifically classification, problems need training data from which your network can learn any existing patterns in the data and use them to assign a particular class to an input vector.
If you really want to use classification then I think your problem can fit into the category of OnevsAll classification. You will need a network (or just a single output layer) with number of cells/sigmoid units equal to your number of candidates (each representing one). Note, here your number of candidates will be fixed.
You can use your entire candidate vector as input to all the cells of your network. The output can be specified using one-hot encoding i.e. 00100 if your candidate no. 3 was the actual correct candidate and in case of no correct candidate output will be 00000.
For this to work, you will need a big data set containing your candidate vectors and corresponding actual correct candidate. For this data you will either need a function (again like multiplication) or you can assign the outputs yourself, in which case the system will learn how you classify the output given different inputs and will classify new data in the same way as you did. This way, it will maximize the number of correct outputs but the definition of correct here will be how you classify the training data.
You can also use a different type of output where each cell of output layer corresponds to your scoring functions and 00001 means that the candidate your 5th scoring function selected was the right one. This way your candidates will not have to be fixed. But again, you will have to manually set the outputs of the training data for your network to learn it.
OnevsAll is a classification technique where there are multiple cells in the output layer and each perform binary classification in between one of the classes vs all others. At the end the sigmoid with the highest probability is assigned 1 and rest zero.
Once your system has learned how you classify data through your training data, you can feed your new data in and it will give you output in the same way i.e. 01000 etc.
I hope my answer was able to help you.:)

Resources