I am trying to make the code below search multiple colours at the same time e.g. red, yellow and orange. I have added masks to the code but a cant get them to apply properly what am i doing wrong I am not sure if the line to add the masks to the frame is in the right place or not.
#include "stdafx.h"
#include <cv.h>
#include <highgui.h>
using namespace std;
using namespace cv::gpu;
IplImage* GetThresholdedImage(IplImage* imgHSV){
IplImage* imgThresh=cvCreateImage(cvGetSize(imgHSV),IPL_DEPTH_8U, 1);
cvInRangeS(imgHSV, cvScalar(170,160,60), cvScalar(180,255,256), imgThresh);
return imgThresh;
}
int main(){
//Char Firetype = type;
CvCapture* capture = cvCaptureFromCAM(1);
if(!capture){
printf("Capture failure\n");
return -1;
}
IplImage* frame=0;
cvNamedWindow("Video");
cvNamedWindow("Fire");
cvNamedWindow("Info");
//iterate through each frame of the video
while(true){
frame = cvQueryFrame(capture);
if(!frame) break;
frame=cvCloneImage(frame);
cvSmooth(frame, frame, CV_GAUSSIAN,3,3); //smooth the original image using Gaussian kernel
cv::Mat imgMat(frame);
cv::Mat mask1;
cv::inRange(imgMat, cv::Scalar(20, 100, 100), cv::Scalar(30, 255, 255), mask1);
cv::Mat mask2;
cv::inRange(imgMat, cv::Scalar(170,160,60), cv::Scalar(180,255,256), mask2);
cv::Mat mask3;
cv::inRange(imgMat, cv::Scalar(70,160,60), cv::Scalar(90,255,256), mask3);
// combine them
cv::Mat mask_combined = mask1 | mask2 | mask3;
// now since our frame from the camera is bgr, we have to convert our mask to 3 channels:
cv::Mat mask_rgb;
cv::cvtColor( mask_combined, mask_rgb, CV_GRAY2BGR );
IplImage framemask = imgMat & mask_rgb;
IplImage* imgHSV = cvCreateImage(cvGetSize(framemask), IPL_DEPTH_8U, 3);
cvCvtColor(frame, imgHSV, CV_BGR2HSV); //Change the color format from BGR to HSV
//This function threshold the HSV image and create a binary image
// function below to get b&w image
IplImage* imgThresh = GetThresholdedImage(imgHSV);
cvSmooth(imgThresh, imgThresh, CV_GAUSSIAN,3,3); //smooth the binary image using Gaussian kernel
cvShowImage("Fire", imgThresh);
cvShowImage("Video", frame);
// cvNamedWindow("Info", Firetype);
cvReleaseImage(&imgHSV);
cvReleaseImage(&imgThresh);
cvReleaseImage(&frame);
//Wait 50mS
int c = cvWaitKey(10);
//If 'ESC' is pressed, break the loop
if((char)c==27 ) break;
}
cvDestroyAllWindows() ;
cvReleaseCapture(&capture);
return 0;
}
tl:dr;
use bitwise-or to combine binary masks,
bitwise_and to apply them
cv::Mat mask1;
cv::inRange( hsv, cv::Scalar(20, 100, 100), cv::Scalar(30, 255, 255), mask1);
cv::Mat mask2;
cv::inRange( hsv, cv::Scalar(170,160,60), cv::Scalar(180,255,256), mask2);
cv::Mat mask3;
cv::inRange( hsv, cv::Scalar(70,160,60), cv::Scalar(90,255,256), mask3);
// combine them
cv::Mat mask_combined = mask1 | mask2 | mask3;
// now since our frame from the camera is bgr, we have to convert our mask to 3 channels:
cv::Mat mask_rgb;
cv::cvtColor( mask_combined, mask_rgb, CV_GRAY2BGR );
// finally, apply the mask to our image
frame = frame & mask_rgb;
Related
Suppose I have an image. I basically want to make boundary across a particular colour that I want. I know the hsv minimum and maximum scalar values of that colour. But I don't know how to proceed further.
#include <iostream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include<stdio.h>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
VideoCapture cap(0);
while(true)
{
Mat img;
cap.read(img);
Mat dst;
Mat imghsv;
cvtColor(img, imghsv, COLOR_BGR2HSV);
inRange(imghsv,
Scalar(0, 30, 0),
Scalar(20, 150, 255),
dst
);
imshow("name",dst);
if (waitKey(30) == 27) //wait for 'esc' key press for 30ms
{
cout << "esc key is pressed by user" << endl;
break;
}
}
}
The inrange function works well but I am not able to draw a boundary across whatever is white (I mean whichever pixel is in the range specified)
You need to first segment the color, and then find the contours of the segmented image.
SEGMENT THE COLOR
Working in HSV is in general a good idea to segment colors. Once you have the correct lower and upper boundary, you can easily segment the color.
A simple approach is to use inRange.
You can find how to use it here for example.
FIND BOUNDARIES
Once you have the binary mask (obtained through segmentation), you can find its boundaries using findContours. You can refer to this or this to know how to use findContours to detect the boundary, and drawContours to draw it.
UPDATE
Here a working example on how to draw a contour on segmented objects.
I used some morphology to clean the mask, and changed to tracked color to be blue, but you can put your favorite color.
#include<opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv)
{
VideoCapture cap(0);
while (true)
{
Mat img;
cap.read(img);
Mat dst;
Mat imghsv;
cvtColor(img, imghsv, COLOR_BGR2HSV);
inRange(imghsv, Scalar(110, 100, 100), Scalar(130, 255, 255), dst); // Detect blue objects
// Remove some noise using morphological operators
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(7,7));
morphologyEx(dst, dst, MORPH_OPEN, kernel);
// Find contours
vector<vector<Point>> contours;
findContours(dst.clone(), contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Draw all contours (green)
// This
drawContours(img, contours, -1, Scalar(0,255,0));
// If you want to draw a contour for a particular one, say the biggest...
// Find the biggest object
if (!contours.empty())
{
int idx_biggest = 0;
int val_biggest = contours[0].size();
for (int i = 0; i < contours.size(); ++i)
{
if (val_biggest < contours[i].size())
{
val_biggest = contours[i].size();
idx_biggest = i;
}
}
// Draw a single contour (blue)
drawContours(img, contours, idx_biggest, Scalar(255,0,0));
// You want also the rotated rectangle (blue) ?
RotatedRect r = minAreaRect(contours[idx_biggest]);
Point2f pts[4];
r.points(pts);
for (int j = 0; j < 4; ++j)
{
line(img, pts[j], pts[(j + 1) % 4], Scalar(0, 0, 255), 2);
}
}
imshow("name", dst);
imshow("image", img);
if (waitKey(30) == 27) //wait for 'esc' key press for 30ms
{
cout << "esc key is pressed by user" << endl;
break;
}
}
}
If you want a particular hue to be detected then you can create a mask to select only the particular color from your original image.
on the hue channel (img):
cv::Mat mask = cv::Mat::zeros(img.size(),CV_8UC1);
for(int i=0;i<img.rows;i++){
for(int j=0;j<img.cols;i++){
if(img.at<uchar>(i,j)==(uchar)specific_hue){
mask.at<uchar>(i,j)=(uchar)255;
}
}
}
color_img.copyTo(masked_image, mask);
If you want something less rigorous, you can define a range around the color to allow more image to pass through the mask.
cv::Mat mask = cv::Mat::zeros(img.size(),CV_8UC1);
int threshold = 5;
for(int i=0;i<img.rows;i++){
for(int j=0;j<img.cols;i++){
if((img.at<uchar>(i,j)>(uchar)(specific_hue - threshold)) && (img.at<uchar>(i,j)<(uchar)(specific_hue + threshold))){
mask.at<uchar>(i,j)=(uchar)255;
}
}
}
color_img.copyTo(masked_image, mask);
Hi I am new to image segmentation, i am trying the given code to get foreground objects, but i got error like "Unsupported format or combination of formats (Only 8-bit, 3-channel input images are supported) in cvWatershed"
cv::Mat img0 = [img toMat];
cv::Mat img1;
cv::cvtColor(img0, img0, CV_RGB2GRAY);
cv::threshold(img0, img0, 100, 255, cv::THRESH_BINARY);
cv::Mat fg;
cv::erode(img0,fg,cv::Mat(),cv::Point(-1,-1),6);
cv::Mat bg;
cv::dilate(img0,bg,cv::Mat(),cv::Point(-1,-1),6);
cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV);
cv::Mat markers(img0.size(),CV_8U,cv::Scalar(0));
markers= fg+bg;
// cv::namedWindow("Markers");
// cv::imshow("Markers", markers);
WatershedSegmenter segmenter;
segmenter.setMarkers(markers);
cv::Mat result1 = segmenter.process(img0);
// cv::Mat result1;
result1.convertTo(result1,CV_8U);
UIImage * result = [UIImage imageWithMat:result1 andImageOrientation:[img imageOrientation]];
return result;
And i try by debugging and got error in line
cv::Mat result1 = segmenter.process(img0);
Thanks in advance
I again analyzed my code and solved the problem. Convert the image to ilpImage and then change it to a 8 bit and 3 channel image using code
WatershedSegmenter segmenter;
segmenter.setMarkers(markers);
markers=cvCreateImage(cvGetSize(my_iplImage), IPL_DEPTH_8U, 3);
cv::Mat result1 = segmenter.process(markers);
This reminds me on one example from book "Opencv 2 computer vision application programming cookbook". All you should do was to do this:
// Get the binary map
cv::Mat binary;
//binary = cv::imread("binary.bmp", 0); // prevent loading of pre-converted image
cvtColor(image, binary, CV_BGR2GRAY); // instead convert original
binary = binary < 65; // apply threshold
Whole code (excluding water segmentation header) would be something like this:
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "watershedSegmentation.h"
int main()
{
// Read input image
cv::Mat image = cv::imread("group.jpg");
if (!image.data)
return 0;
// Display the image
cv::namedWindow("Original Image");
cv::imshow("Original Image", image);
// // Get the binary map
cv::Mat binary;
//binary = cv::imread("binary.bmp", 0); // prevent loading of pre-converted image
cvtColor(image, binary, CV_BGR2GRAY); // instead convert original
binary = binary < 60; // apply threshold
// Display the binary image
cv::namedWindow("Binary Image");
cv::imshow("Binary Image", binary);
// Eliminate noise and smaller objects
cv::Mat fg;
cv::erode(binary, fg, cv::Mat(), cv::Point(-1, -1), 6);
// Display the foreground image
cv::namedWindow("Foreground Image");
cv::imshow("Foreground Image", fg);
// Identify image pixels without objects
cv::Mat bg;
cv::dilate(binary, bg, cv::Mat(), cv::Point(-1, -1), 6);
cv::threshold(bg, bg, 1, 128, cv::THRESH_BINARY_INV);
// Display the background image
cv::namedWindow("Background Image");
cv::imshow("Background Image", bg);
// Show markers image
cv::Mat markers(binary.size(), CV_8U, cv::Scalar(0));
markers = fg + bg;
cv::namedWindow("Markers");
cv::imshow("Markers", markers);
// Create watershed segmentation object
WatershedSegmenter segmenter;
// Set markers and process
segmenter.setMarkers(markers);
segmenter.process(image);
// Display segmentation result
cv::namedWindow("Segmentation");
cv::imshow("Segmentation", segmenter.getSegmentation());
// Display watersheds
cv::namedWindow("Watersheds");
cv::imshow("Watersheds", segmenter.getWatersheds());
cv::waitKey();
return 0;
}
I'm trying to generate a bird's eye view from an image. For the camera intrinsics and disortions, I'm using hard coded values that I retrieved from a driving simulator that has a camera mounted on it's roof.
The basis for the code is from "Learning OpenCV Computer Vision with the OpenCV Library", Pg 409.
When I run the code on an image containing a chess board with 3 inner corners per row and 4 inner corners per column, my bird's eye view is upside down. I need the image to correctly turn into a bird's eye and that is right side up because I need the homography matrix for another function call.
Here are the input and output images, and the code i'm using:
Input image:
Corners detected:
Output Image/bird's eye (upside down!):
The code:
#include <highgui.h>
#include <cv.h>
#include <cxcore.h>
#include <math.h>
#include <vector>
#include <stdio.h>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char* argv[]) {
if(argc != 4) return -1;
// INPUT PARAMETERS:
//
int board_w = atoi(argv[1]); //inner corners per row
int board_h = atoi(argv[2]); //inner corners per column
int board_n = board_w * board_h;
CvSize board_sz = cvSize( board_w, board_h );
//Hard coded intrinsics for the camera
Mat intrinsicMat = (Mat_<double>(3, 3) <<
418.7490, 0., 236.8528,
0.,558.6650,322.7346,
0., 0., 1.);
//Hard coded distortions for the camera
CvMat* distortion = cvCreateMat(1, 4, CV_32F);
cvmSet(distortion, 0, 0, -0.0019);
cvmSet(distortion, 0, 1, 0.0161);
cvmSet(distortion, 0, 2, 0.0011);
cvmSet(distortion, 0, 3, -0.0016);
IplImage* image = 0;
IplImage* gray_image = 0;
if( (image = cvLoadImage(argv[3])) == 0 ) {
printf("Error: Couldn’t load %s\n",argv[3]);
return -1;
}
gray_image = cvCreateImage( cvGetSize(image), 8, 1 );
cvCvtColor(image, gray_image, CV_BGR2GRAY );
// UNDISTORT OUR IMAGE
//
IplImage* mapx = cvCreateImage( cvGetSize(image), IPL_DEPTH_32F, 1 );
IplImage* mapy = cvCreateImage( cvGetSize(image), IPL_DEPTH_32F, 1 );
CvMat intrinsic (intrinsicMat);
//This initializes rectification matrices
//
cvInitUndistortMap(
&intrinsic,
distortion,
mapx,
mapy
);
IplImage *t = cvCloneImage(image);
// Rectify our image
//
cvRemap( t, image, mapx, mapy );
// GET THE CHESSBOARD ON THE PLANE
//
cvNamedWindow("Chessboard");
CvPoint2D32f* corners = new CvPoint2D32f[ board_n ];
int corner_count = 0;
int found = cvFindChessboardCorners(
image,
board_sz,
corners,
&corner_count,
CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS
);
if(!found){
printf("Couldn’t aquire chessboard on %s, "
"only found %d of %d corners\n",
argv[3],corner_count,board_n
);
return -1;
}
//Get Subpixel accuracy on those corners:
cvFindCornerSubPix(
gray_image,
corners,
corner_count,
cvSize(11,11),
cvSize(-1,-1),
cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 30, 0.1 )
);
//GET THE IMAGE AND OBJECT POINTS:
// We will choose chessboard object points as (r,c):
// (0,0), (board_w-1,0), (0,board_h-1), (board_w-1,board_h-1).
//
CvPoint2D32f objPts[4], imgPts[4];
imgPts[0] = corners[0];
imgPts[1] = corners[board_w-1];
imgPts[2] = corners[(board_h-1)*board_w];
imgPts[3] = corners[(board_h-1)*board_w + board_w-1];
objPts[0].x = 0; objPts[0].y = 0;
objPts[1].x = board_w -1; objPts[1].y = 0;
objPts[2].x = 0; objPts[2].y = board_h -1;
objPts[3].x = board_w -1; objPts[3].y = board_h -1;
// DRAW THE POINTS in order: B,G,R,YELLOW
//
cvCircle( image, cvPointFrom32f(imgPts[0]), 9, CV_RGB(0,0,255), 3); //blue
cvCircle( image, cvPointFrom32f(imgPts[1]), 9, CV_RGB(0,255,0), 3); //green
cvCircle( image, cvPointFrom32f(imgPts[2]), 9, CV_RGB(255,0,0), 3); //red
cvCircle( image, cvPointFrom32f(imgPts[3]), 9, CV_RGB(255,255,0), 3); //yellow
// DRAW THE FOUND CHESSBOARD
//
cvDrawChessboardCorners(
image,
board_sz,
corners,
corner_count,
found
);
cvShowImage( "Chessboard", image );
// FIND THE HOMOGRAPHY
//
CvMat *H = cvCreateMat( 3, 3, CV_32F);
cvGetPerspectiveTransform( objPts, imgPts, H);
Mat homography = H;
cvSave("Homography.xml",H); //We can reuse H for the same camera mounting
/**********************GENERATING 3X4 MATRIX***************************/
// LET THE USER ADJUST THE Z HEIGHT OF THE VIEW
//
float Z = 23;
int key = 0;
IplImage *birds_image = cvCloneImage(image);
cvNamedWindow("Birds_Eye");
// LOOP TO ALLOW USER TO PLAY WITH HEIGHT:
//
// escape key stops
//
while(key != 27) {
// Set the height
//
CV_MAT_ELEM(*H,float,2,2) = Z;
// COMPUTE THE FRONTAL PARALLEL OR BIRD’S-EYE VIEW:
// USING HOMOGRAPHY TO REMAP THE VIEW
//
cvWarpPerspective(
image,
birds_image,
H,
CV_INTER_LINEAR | CV_WARP_INVERSE_MAP | CV_WARP_FILL_OUTLIERS
);
cvShowImage( "Birds_Eye", birds_image );
imwrite("/home/lee/bird.jpg", birds_image);
key = cvWaitKey();
if(key == 'u') Z += 0.5;
if(key == 'd') Z -= 0.5;
}
return 0;
}
The homography result seems correct. Since you're mapping the camera's z-axe as the world's y-axe, the image resulting of the bird's eye view (BEV) remap is upside down.
If you really need the BEV image as the camera shot you can have use H as H = Ty * Rx * H, where R is a 180 degree rotation around x-axe, T is a translation in y-axe and H is your original homography. The translation is required since your rotation remapped your old BEV on the negative side of y-axe.
I have x-ray image of a hand. I need to extract bones automatically. I can easily segmentate a hand using different techniques. But I need to get bones and using those techniques don't help. Some of the bones are brighter then orthers, so if I use thresholding some of them disapear while others become clearer rising threshold. And I think maybe I should threshold a region of the hand only? Is it possible to threshold ROI that is not a square? O maybe you have any other solutions, advices? Maybe there are some libraries like OpenCV or something for that? Any help would be very great!
Extended:
Raw Image Expected Output
One approach could be to segment the hand and fingers from the image:
And then creating another image with just the hand silhouette:
Once you have the silhouette you can erode the image to make it a little smaller. This is used to subtract the hand from the hand & fingers image, resulting in the fingers:
The code below shows to execute this approach:
void detect_hand_and_fingers(cv::Mat& src);
void detect_hand_silhoutte(cv::Mat& src);
int main(int argc, char* argv[])
{
cv::Mat img = cv::imread(argv[1]);
if (img.empty())
{
std::cout << "!!! imread() failed to open target image" << std::endl;
return -1;
}
// Convert RGB Mat to GRAY
cv::Mat gray;
cv::cvtColor(img, gray, CV_BGR2GRAY);
cv::Mat gray_silhouette = gray.clone();
/* Isolate Hand + Fingers */
detect_hand_and_fingers(gray);
cv::imshow("Hand+Fingers", gray);
cv::imwrite("hand_fingers.png", gray);
/* Isolate Hand Sillhoute and subtract it from the other image (Hand+Fingers) */
detect_hand_silhoutte(gray_silhouette);
cv::imshow("Hand", gray_silhouette);
cv::imwrite("hand_silhoutte.png", gray_silhouette);
/* Subtract Hand Silhoutte from Hand+Fingers so we get only Fingers */
cv::Mat fingers = gray - gray_silhouette;
cv::imshow("Fingers", fingers);
cv::imwrite("fingers_only.png", fingers);
cv::waitKey(0);
return 0;
}
void detect_hand_and_fingers(cv::Mat& src)
{
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3,3), cv::Point(1,1));
cv::morphologyEx(src, src, cv::MORPH_ELLIPSE, kernel);
int adaptiveMethod = CV_ADAPTIVE_THRESH_GAUSSIAN_C; // CV_ADAPTIVE_THRESH_MEAN_C, CV_ADAPTIVE_THRESH_GAUSSIAN_C
cv::adaptiveThreshold(src, src, 255,
adaptiveMethod, CV_THRESH_BINARY,
9, -5);
int dilate_sz = 1;
cv::Mat element = cv::getStructuringElement(cv::MORPH_ELLIPSE,
cv::Size(2*dilate_sz, 2*dilate_sz),
cv::Point(dilate_sz, dilate_sz) );
cv::dilate(src, src, element);
}
void detect_hand_silhoutte(cv::Mat& src)
{
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(7, 7), cv::Point(3, 3));
cv::morphologyEx(src, src, cv::MORPH_ELLIPSE, kernel);
int adaptiveMethod = CV_ADAPTIVE_THRESH_MEAN_C; // CV_ADAPTIVE_THRESH_MEAN_C, CV_ADAPTIVE_THRESH_GAUSSIAN_C
cv::adaptiveThreshold(src, src, 255,
adaptiveMethod, CV_THRESH_BINARY,
251, 5); // 251, 5
int erode_sz = 5;
cv::Mat element = cv::getStructuringElement(cv::MORPH_ELLIPSE,
cv::Size(2*erode_sz + 1, 2*erode_sz+1),
cv::Point(erode_sz, erode_sz) );
cv::erode(src, src, element);
int dilate_sz = 1;
element = cv::getStructuringElement(cv::MORPH_ELLIPSE,
cv::Size(2*dilate_sz + 1, 2*dilate_sz+1),
cv::Point(dilate_sz, dilate_sz) );
cv::dilate(src, src, element);
cv::bitwise_not(src, src);
}
I have detected just all the red contours and am struggling to find a way to run a shape detection algorithm on these contours to get just red circules but don't know how to extract just red circle and eliminate the undesirable rest of contours ? Source Code:
#include "stdafx.h"
#include"math.h"
#include"conio.h"
#include"cv.h"
#include"highgui.h"
#include"stdio.h"
#include <math.h>
int main()
{
int i,j,k;
int h,w,seuill,channels;
int seuilr, channelsr;
int temp=0;
uchar *data,*datar;
i=j=k=0;
IplImage *frame=cvLoadImage("Mon_image.jpg",1);
IplImage *result=cvCreateImage( cvGetSize(frame), IPL_DEPTH_8U, 1 );
IplImage *gray=cvCreateImage( cvGetSize(frame), IPL_DEPTH_8U, 1 );
cvCvtColor(frame, result, CV_BGR2GRAY );
//IplImage* gray;
cvNamedWindow("original",CV_WINDOW_AUTOSIZE);
cvNamedWindow("Result",CV_WINDOW_AUTOSIZE);
h = frame->height;
w = frame->width;
seuill =frame->widthStep;
channels = frame->nChannels;
data = (uchar *)frame->imageData;
seuilr=result->widthStep;
channelsr=result->nChannels;
datar = (uchar *)result->imageData;
for(i=0;i < (h);i++)
for(j=0;j <(w);j++)
{
if(((data[i*seuill+j*channels+2]) >(19+data[i*seuill+j*channels]))&& ((data[i*seuill+j*channels+2]) > (19+data[i*seuill+j*channels+1])))
datar[i*seuilr+j*channelsr]=255;
else
datar[i*seuilr+j*channelsr]=0;
}
cvCanny(result,result, 50, 100, 3);
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* circles = cvHoughCircles(result, storage, CV_HOUGH_GRADIENT, 1, 40.0, 100, 100,0,0);
cvShowImage("original",frame);
cvShowImage("Result",result);
cvSaveImage("result.jpg",result);
cvWaitKey(0);
cvDestroyWindow("original");
cvDestroyWindow("Result");
return 0;
}
I will rather use RANSAC algorithm to detect circle in your set of contours but, Hough transform will also do the work.
See here for an explication of the both process. Solution in matlab in given.