So, I have a stereo camera with left and right cameras that are already calibrated. Since the precision of stereo vision highly depends on the calibration, it would be useful if the system can detect whether itself is slightly out of calibration, e.g, due to temperature change or mechanical shock that changes the baseline/rotation of the two cameras slightly
So my thought is for every new image pair taken by the stereo camera, the software try to find matching points between the two images, and recalculate the fundamental matrix to see if there is a big shift. However, finding matching points is error prone, especially when no constrains applied
My question is: since I know there should be just a slight shift of the calibration, is there a way to leverage the original calibration to enable a relaxed epipolar constrains on finding the matching points between the two images? maybe as well as a disparity constrain. e.g., I use the original calibration to calculate the distance of the feature points, and I roughly know the disparity will still be within a certain range even the calibration shifted. With such assumptions, I believe I can effectively avoid mismatched points between left and right images, therefore ensure my new fundamental matrix calculation.
So I wonder is there a convenient way to relax the epipolar constrain by a few pixels, and also specify a numDisparities for feature point matching? Or maybe there is a better way to do similar things.
this is my first question in this forum.
I'm working about a project for my thesis. I have to calibrate my camera to import intrinsic parameters in photoscan fo reconstructon 3D of the object which measures maximum 0,7 x 0,7 mm.
I calibrate the camera with openCv, photographing a symmetric pattern glass (0,5x0,5 mm) with circle grid. I do 24 photos, 8 for each kind of inclination ( horizontal vertical and oblique)
1)I would know how can I evaluate the calibration? I read that Reprojection Errors isn't an absolute evaluation, can I compare cx and cy with the real center of the image? Can I evaluate the values of distorsion parameters?(How?)
2) How can improve my method? Do you think that i need of this little ( and perfect) pattern or can I calibrate with chessboard?
Any other suggestion is welcome
The evaluation of results is one of the hardest task in photogrammetry. Therefore questions are: How accurate do you need to be? Are we talking about about accuracies of 1ppm or 1:1,000? How reliable is your hardware for your goal?
1) The reprojection errors do not really yield anything reliable. It just tells you how the chosen function fits into the measurements (is also often referred as internal accuracy). So if your measurements are garbage the result protocol will happily tell you how well it could fit into your garbage. A reliable evaluation is only possible if you have enough external references to get a good approximation for the external accuracy. This can be achieved with precise known distances between targets which have been not included in the calibration step to scale the systems. For a solid calibration with a plane calibration body you'll need six of them. Two as a cross on the main diagonal and four on each side.
2) How big are the circles in the image? You might need to correct your image measurements for circle eccentricity before starting your calibration. Is your measurement volume two dimensional? Only in that case a two dimensional calibration field is a good choice. Circle targets are (at the moment) with a huge distance the most reliable,robust and precise targets. Chessboard targets are mostly used in robotics or computer vision but not really when you expect some level of precision. Also the cx, cy approach is a bad choice if you want to achieve some level of precision since it's arbitrary and has no physical basis. Look for a physical equation like the Brown approach to describe your lens. The parameters are mostly referred as: c (focal length), x0,y0 (principal point) ,r0,A1,A2,A3 (radial symmetric distortion),B1,B2 (radial asymmetric distortion) ,C1,C2 (affine distortion).
I am totally new to camera calibration techniques... I am using OpenCV chessboard technique... I am using a webcam from Quantum...
Here are my observations and steps..
I have kept each chess square side = 3.5 cm. It is a 7 x 5 chessboard with 6 x 4 internal corners. I am taking total of 10 images in different views/poses at a distance of 1 to 1.5 m from the webcam.
I am following the C code in Learning OpenCV by Bradski for the calibration.
my code for calibration is
cvCalibrateCamera2(object_points,image_points,point_counts,cvSize(640,480),intrinsic_matrix,distortion_coeffs,NULL,NULL,CV_CALIB_FIX_ASPECT_RATIO);
Before calling this function I am making the first and 2nd element along the diagonal of the intrinsic matrix as one to keep the ratio of focal lengths constant and using CV_CALIB_FIX_ASPECT_RATIO
With the change in distance of the chess board the fx and fy are changing with fx:fy almost equal to 1. there are cx and cy values in order of 200 to 400. the fx and fy are in the order of 300 - 700 when I change the distance.
Presently I have put all the distortion coefficients to zero because I did not get good result including distortion coefficients. My original image looked handsome than the undistorted one!!
Am I doing the calibration correctly?. Should I use any other option than CV_CALIB_FIX_ASPECT_RATIO?. If yes, which one?
Hmm, are you looking for "handsome" or "accurate"?
Camera calibration is one of the very few subjects in computer vision where accuracy can be directly quantified in physical terms, and verified by a physical experiment. And the usual lesson is that (a) your numbers are just as good as the effort (and money) you put into them, and (b) real accuracy (as opposed to imagined) is expensive, so you should figure out in advance what your application really requires in the way of precision.
If you look up the geometrical specs of even very cheap lens/sensor combinations (in the megapixel range and above), it becomes readily apparent that sub-sub-mm calibration accuracy is theoretically achievable within a table-top volume of space. Just work out (from the spec sheet of your camera's sensor) the solid angle spanned by one pixel - you'll be dazzled by the spatial resolution you have within reach of your wallet. However, actually achieving REPEATABLY something near that theoretical accuracy takes work.
Here are some recommendations (from personal experience) for getting a good calibration experience with home-grown equipment.
If your method uses a flat target ("checkerboard" or similar), manufacture a good one. Choose a very flat backing (for the size you mention window glass 5 mm thick or more is excellent, though obviously fragile). Verify its flatness against another edge (or, better, a laser beam). Print the pattern on thick-stock paper that won't stretch too easily. Lay it after printing on the backing before gluing and verify that the square sides are indeed very nearly orthogonal. Cheap ink-jet or laser printers are not designed for rigorous geometrical accuracy, do not trust them blindly. Best practice is to use a professional print shop (even a Kinko's will do a much better job than most home printers). Then attach the pattern very carefully to the backing, using spray-on glue and slowly wiping with soft cloth to avoid bubbles and stretching. Wait for a day or longer for the glue to cure and the glue-paper stress to reach its long-term steady state. Finally measure the corner positions with a good caliper and a magnifier. You may get away with one single number for the "average" square size, but it must be an average of actual measurements, not of hopes-n-prayers. Best practice is to actually use a table of measured positions.
Watch your temperature and humidity changes: paper adsorbs water from the air, the backing dilates and contracts. It is amazing how many articles you can find that report sub-millimeter calibration accuracies without quoting the environment conditions (or the target response to them). Needless to say, they are mostly crap. The lower temperature dilation coefficient of glass compared to common sheet metal is another reason for preferring the former as a backing.
Needless to say, you must disable the auto-focus feature of your camera, if it has one: focusing physically moves one or more pieces of glass inside your lens, thus changing (slightly) the field of view and (usually by a lot) the lens distortion and the principal point.
Place the camera on a stable mount that won't vibrate easily. Focus (and f-stop the lens, if it has an iris) as is needed for the application (not the calibration - the calibration procedure and target must be designed for the app's needs, not the other way around). Do not even think of touching camera or lens afterwards. If at all possible, avoid "complex" lenses - e.g. zoom lenses or very wide angle ones. For example, anamorphic lenses require models much more complex than stock OpenCV makes available.
Take lots of measurements and pictures. You want hundreds of measurements (corners) per image, and tens of images. Where data is concerned, the more the merrier. A 10x10 checkerboard is the absolute minimum I would consider. I normally worked at 20x20.
Span the calibration volume when taking pictures. Ideally you want your measurements to be uniformly distributed in the volume of space you will be working with. Most importantly, make sure to angle the target significantly with respect to the focal axis in some of the pictures - to calibrate the focal length you need to "see" some real perspective foreshortening. For best results use a repeatable mechanical jig to move the target. A good one is a one-axis turntable, which will give you an excellent prior model for the motion of the target.
Minimize vibrations and associated motion blur when taking photos.
Use good lighting. Really. It's amazing how often I see people realize late in the game that you need a generous supply of photons to calibrate a camera :-) Use diffuse ambient lighting, and bounce it off white cards on both sides of the field of view.
Watch what your corner extraction code is doing. Draw the detected corner positions on top of the images (in Matlab or Octave, for example), and judge their quality. Removing outliers early using tight thresholds is better than trusting the robustifier in your bundle adjustment code.
Constrain your model if you can. For example, don't try to estimate the principal point if you don't have a good reason to believe that your lens is significantly off-center w.r.t the image, just fix it at the image center on your first attempt. The principal point location is usually poorly observed, because it is inherently confused with the center of the nonlinear distortion and by the component parallel to the image plane of the target-to-camera's translation. Getting it right requires a carefully designed procedure that yields three or more independent vanishing points of the scene and a very good bracketing of the nonlinear distortion. Similarly, unless you have reason to suspect that the lens focal axis is really tilted w.r.t. the sensor plane, fix at zero the (1,2) component of the camera matrix. Generally speaking, use the simplest model that satisfies your measurements and your application needs (that's Ockam's razor for you).
When you have a calibration solution from your optimizer with low enough RMS error (a few tenths of a pixel, typically, see also Josh's answer below), plot the XY pattern of the residual errors (predicted_xy - measured_xy for each corner in all images) and see if it's a round-ish cloud centered at (0, 0). "Clumps" of outliers or non-roundness of the cloud of residuals are screaming alarm bells that something is very wrong - likely outliers due to bad corner detection or matching, or an inappropriate lens distortion model.
Take extra images to verify the accuracy of the solution - use them to verify that the lens distortion is actually removed, and that the planar homography predicted by the calibrated model actually matches the one recovered from the measured corners.
This is a rather late answer, but for people coming to this from Google:
The correct way to check calibration accuracy is to use the reprojection error provided by OpenCV. I'm not sure why this wasn't mentioned anywhere in the answer or comments, you don't need to calculate this by hand - it's the return value of calibrateCamera. In Python it's the first return value (followed by the camera matrix, etc).
The reprojection error is the RMS error between where the points would be projected using the intrinsic coefficients and where they are in the real image. Typically you should expect an RMS error of less than 0.5px - I can routinely get around 0.1px with machine vision cameras. The reprojection error is used in many computer vision papers, there isn't a significantly easier or more accurate way to determine how good your calibration is.
Unless you have a stereo system, you can only work out where something is in 3D space up to a ray, rather than a point. However, as one can work out the pose of each planar calibration image, it's possible to work out where each chessboard corner should fall on the image sensor. The calibration process (more or less) attempts to work out where these rays fall and minimises the error over all the different calibration images. In Zhang's original paper, and subsequent evaluations, around 10-15 images seems to be sufficient; at this point the error doesn't decrease significantly with the addition of more images.
Other software packages like Matlab will give you error estimates for each individual intrinsic, e.g. focal length, centre of projection. I've been unable to make OpenCV spit out that information, but maybe it's in there somewhere. Camera calibration is now native in Matlab 2014a, but you can still get hold of the camera calibration toolbox which is extremely popular with computer vision users.
http://www.vision.caltech.edu/bouguetj/calib_doc/
Visual inspection is necessary, but not sufficient when dealing with your results. The simplest thing to look for is that straight lines in the world become straight in your undistorted images. Beyond that, it's impossible to really be sure if your cameras are calibrated well just by looking at the output images.
The routine provided by Francesco is good, follow that. I use a shelf board as my plane, with the pattern printed on poster paper. Make sure the images are well exposed - avoid specular reflection! I use a standard 8x6 pattern, I've tried denser patterns but I haven't seen such an improvement in accuracy that it makes a difference.
I think this answer should be sufficient for most people wanting to calibrate a camera - realistically unless you're trying to calibrate something exotic like a Fisheye or you're doing it for educational reasons, OpenCV/Matlab is all you need. Zhang's method is considered good enough that virtually everyone in computer vision research uses it, and most of them either use Bouguet's toolbox or OpenCV.
I was looking into the OpenCV 2.2 function cameraCalibration(...) and I noticed a flag CV_CALIB_RATIONAL_MODEL that enables a new radial distortion model supposed to work better with wide-angle lenses:
Where is this model coming from exactly? I read some papers that seemed to be somehow related but the model they employ seems to be quite different from the one implemented by OpenCV.
A Rational Function Lens Distortion Model for General Cameras
Simultaneous linear estimation of multiple view geometry and lens distortion
Could anyone give me more information about the model opencv exploit and why?
http://opencv-users.1802565.n2.nabble.com/OpenCV-2-2-New-Rational-Distortion-Model-td5807334.html
Claus, D. and Fitzgibbon, A.W.
A Rational Function Lens Distortion Model for General Cameras
Computer Vision and Pattern Recognition (June 2005)
http://www.robots.ox.ac.uk/~dclaus/publications/claus05rf_model.pdf
Simultaneous Linear Estimation of Multiple View Geometry and Lens Distortion
A. W. Fitzgibbon
IEEE Conference on Computer Vision and Pattern Recognition, 2001
http://marcade.robots.ox.ac.uk:8080/~vgg/publications/2001/Fitzgibbon01b/fitzgibbon01b.pdf
Well basically if you don't need GREAT precision (when I mean great I mean 0.003 pixel re-projection error) you can omit that model. It is mainly useful for "fisheye" cameras, where the distortion is huge. A guy in my university is taking his PhD about camera calibration and he says that for normal cameras the precision of the calibration does not increase so much (even decrease because of "dimensionality curse" when calibrating if the images are not enough good or few images used).
I am working with a set of calibrated images that form a ring around a foreground object (1). I used Fusiello's method (1) to rectify adjacent pairs of images, and then I performed disparity estimation.
When I take the matched points from a stereo pair and triangulate them, it forms an accurate point cloud. Unfortunately, when I triangulate the points from another stereo image pair, this point cloud never aligns correctly with the original cloud.
Should calibrated, rectified images' point clouds merge together automatically?
Thanks in advance for any help you can offer.
This might be due to the accuracy of calibration - both intrinsic (i.e. the same camera model - and how it handles distortion) and extrinsic (i.e. the camera pose in real space). Together, of course, these dictate the ultimate accuracy of your re-projection.
Do you have a measure of error for camera calibration - in terms of MSE re-projection?
Cumulative error is often noticeable in my experience if simply iterating over subsequent images. Some form of global optimisation often needs to be performed to first correct positions for all the camera poses.
The accuracy of your disparity estimation is also a factor. Not only in terms of the algorithm you using, but also in relation to the stereo baseline and how it relates to the size/nature of the object in question (how concave/convex), and how many sampling of the images you are taking (and the quality of those images - exposure/depth-of-field/etc).
Fundamentally, just how "off" are your point clouds? Are they close to being aligned (you could do a bit of ICP before triangulation...). Are they closer in the "centre" of the re-projection? Are they worse for projections taken from opposing images on opposite sides of the object?
Remember as well that (due to the discrete sampling) you shouldn't expect points to ever be re-projected exactly "on-top" on one another. Some form of binning operation during the triangulation pipeline usually occurs for handling this (hence most of the research work in visual hull -> voxels -> marching cubes -> triangulated surface around this...)
Have you checked out MeshLab BTW?