I'm trying to use Pybrain to predict sequences of characters belonging to the Reber grammar.
Concretely what I'm doing is generating strings using the Reber grammar graph (you can check it here : http://www.felixgers.de/papers/phd.pdf page 22). An example of such string could be BPVVE. I want my neural network to learn the underlying rules of the grammar. For each of these string I create a sequence that would typically look like this :
[B, T, S, X, P, V, E,] , [B, T, S, X, P, V, E,]
B -> value = [1, 0, 0, 0, 0, 0, 0,] , target = [0, 0, 0, 0, 1, 0, 0,]
P -> value = [0, 0, 0, 0, 1, 0, 0,] , target = [0, 0, 0, 0, 0, 1, 0,]
V -> value = [0, 0, 0, 0, 0, 1, 0,] , target = [0, 0, 0, 0, 0, 1, 0,]
V -> value = [0, 0, 0, 0, 0, 1, 0,] , target = [0, 0, 0, 0, 0, 0, 1,]
E -> E is ignored for now because it marks the end
as you can see the value is just a 7-d vector representing the current letter and the target is the next letter in the Reber word.
Here is the code I'm trying to run :
#!/usr/bin/python
import reberGrammar as reber
import random as rnd
from pylab import *
from pybrain.supervised import RPropMinusTrainer
from pybrain.supervised import BackpropTrainer
from pybrain.datasets import SequenceClassificationDataSet
from pybrain.structure.modules import LSTMLayer, SoftmaxLayer
from pybrain.tools.validation import testOnSequenceData
from pybrain.tools.shortcuts import buildNetwork
def reberToListInt(word): #e.g. "BPVVE" -> [0,4,3,3,5]
out = [None]*len(word)
for i,l in enumerate(word):
if l == 'B':
out[i] = 0
elif l == 'T':
out[i] = 1
elif l == 'S':
out[i] = 2
elif l == 'V':
out[i] = 3
elif l == 'P':
out[i] = 4
elif l == 'E':
out[i] = 5
else :
out[i] = 6
return out
def buildReberDataSet(numSample):
"""Generate a 7 class dataset"""
reberLexicon = reber.ReberGrammarLexicon(numSample)
DS = SequenceClassificationDataSet(7, 7, nb_classes=7)
for rw in reberLexicon.lexicon:
DS.newSequence()
rw2 = reberToListInt(rw)
for i in range(len(rw2)-1): #inserting one letter at a time
inpt = outpt = [0.0]*7
inpt[rw2[i]]=1.0
outpt[rw2[i+1]]=1.0
DS.addSample(inpt,outpt)
return DS
def printDataSet(DS, numLines): #just to print some stat
print "\t############"
print "Number of sequences: ",DS.getNumSequences()
print "Input and output dimensions: ", DS.indim,"\t", DS.outdim
print "\n"
for i in range(numLines):
for inp, target in DS.getSequenceIterator(i):
print inp,
print "\n"
print "\t#############"
'''Dataset creation / split into training and test sets'''
fullDS = buildReberDataSet(700)
tstdata, trndata = fullDS.splitWithProportion( 0.25 )
trndata._convertToOneOfMany( bounds=[0.,1.])
tstdata._convertToOneOfMany( bounds=[0.,1.])
#printDataSet(trndata,2)
'''Network setup / training'''
rnn = buildNetwork( trndata.indim, 7, trndata.outdim, hiddenclass=LSTMLayer, outclass=SoftmaxLayer, outputbias=False, recurrent=True)
trainer = RPropMinusTrainer( rnn, dataset=trndata, verbose=True )
#trainer = BackpropTrainer( rnn, dataset=trndata, verbose=True, momentum=0.9, learningrate=0.5 )
trainError=[]
testError =[]
#errors = trainer.trainUntilConvergence()
for i in range(9):
trainer.trainEpochs( 2 )
trainError.append(100. * (1.0-testOnSequenceData(rnn, trndata)))
testError.append(100. * (1.0-testOnSequenceData(rnn, tstdata)))
print "train error: %5.2f%%" % trainError[i], ", test error: %5.2f%%" % testError[i]
plot(trainError)
hold(True)
plot(testError)
show()
I fail to train this net. The errors are fluctuating a lot and there is no real convergence. I would really appreciate some advises on this.
Here is the code I'm using to generate Reber strings :
#!/usr/bin/python
import random as rnd
class ReberGrammarLexicon(object):
lexicon = set() #contain Reber words
graph = [ [(1,'T'), (5,'P')], \
[(1, 'S'), (2, 'X')], \
[(3,'S') ,(5, 'X')], \
[(6, 'E')], \
[(3, 'V'),(2, 'P')], \
[(4, 'V'), (5, 'T')] ] #store the graph
def __init__(self, num, maxSize = 1000): #fill Lexicon with num words
self.maxSize = maxSize
if maxSize < 5:
raise NameError('maxSize too small, require maxSize > 4')
while len(self.lexicon) < num:
word = self.generateWord()
if word != None:
self.lexicon.add(word)
def generateWord(self): #generate one word
c = 2
currentEdge = 0
word = 'B'
while c <= self.maxSize:
inc = rnd.randint(0,len(self.graph[currentEdge])-1)
nextEdge = self.graph[currentEdge][inc][0]
word += self.graph[currentEdge][inc][1]
currentEdge = nextEdge
if currentEdge == 6 :
break
c+=1
if c > self.maxSize :
return None
return word
Thanks,
Best
Related
I have a brute force optimization algorithm with the objective function of the form:
np.clip(x # M, a_min=0, a_max=1) # P
where x is a Boolean decision vector, M is a Boolean matrix/tensor and P is a probability vector. As you can guess, x # M as an inner product can have values higher than 1 where is not allowed as the obj value should be a probability scalar or vector (if M is a tensor) between 0 to 1. So, I have used numpy.clip to fix the x # M to 0 and 1 values. How can I set up a mechanism like clip in cvxpy to achieve the same result? I have spent ours on internet with no lock so I appreciate any hint. I have been trying to use this to replicate clip but it raises Exception: Cannot evaluate the truth value of a constraint or chain constraints, e.g., 1 >= x >= 0. As a side note, since cvxpy cannot handle tensors, I loop through tensor slices with M[s].
n = M.shape[0]
m = M.shape[1]
w = M.shape[2]
max_budget_of_decision_variable = 7
x = cp.Variable(n, boolean=True)
obj = 0
for s in range(m):
for w in range(w):
if (x # M[s])[w] >= 1:
(x # M[s])[w] = 1
obj += x # M[s] # P
objective = cp.Maximize(obj)
cst = []
cst += [cp.sum(y) <= max_budget_of_decision_variable ]
prob = cp.Problem(objective, constraints = cst)
As an example, consider M = np.array([ [1, 0, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0], [1, 1, 1, 0, 1, 0]]) and P = np.array([0.05, 0.15, 0.1, 0.15, 0.5, 0.05]).
currently I'm making a comparison between the Prim's Algorithm and Kruskal's Algorithm. Both codes are from GeeksforGeeks, however only the Kruskal's algorithm has the total calculated weight in finding the MST. The Prim's algorithm doesn't have one, and I don't have any idea on how can I output the total weight. I hope you can help me.
Here's the code for the Kruskal's Algorithm (from GeeksforGeeks):
class Graph:
def __init__(self, vertices):
self.V = vertices
self.graph = []
def addEdge(self, u, v, w):
self.graph.append([u, v, w])
def find(self, parent, i):
if parent[i] == i:
return i
return self.find(parent, parent[i])
def union(self, parent, rank, x, y):
xroot = self.find(parent, x)
yroot = self.find(parent, y)
if rank[xroot] < rank[yroot]:
parent[xroot] = yroot
elif rank[xroot] > rank[yroot]:
parent[yroot] = xroot
else:
parent[yroot] = xroot
rank[xroot] += 1
def KruskalMST(self):
result = []
i = 0
e = 0
self.graph = sorted(self.graph,
key=lambda item: item[2])
parent = []
rank = []
for node in range(self.V):
parent.append(node)
rank.append(0)
while e < self.V - 1:
u, v, w = self.graph[i]
i = i + 1
x = self.find(parent, u)
y = self.find(parent, v)
if x != y:
e = e + 1
result.append([u, v, w])
self.union(parent, rank, x, y)
minimumCost = 0
print("Edges in the constructed MST")
for u, v, weight in result:
minimumCost += weight
print("%d -- %d == %d" % (u, v, weight))
print("Minimum Spanning Tree", minimumCost)
g = Graph(4)
g.addEdge(0, 1, 10)
g.addEdge(0, 2, 6)
g.addEdge(0, 3, 5)
g.addEdge(1, 3, 15)
g.addEdge(2, 3, 4)
g.KruskalMST()
The code for Prim's Algorithm (also from GeeksforGeeks):
import sys
class Graph():
def __init__(self, vertices):
self.V = vertices
self.graph = [[0 for column in range(vertices)]
for row in range(vertices)]
minimumcost = 0
def printMST(self, parent):
print ("Edge \tWeight")
for i in range(1, self.V):
print (parent[i], "-", i, "\t", self.graph[i][parent[i]])
def minKey(self, key, mstSet):
min = sys.maxsize
for v in range(self.V):
if key[v] < min and mstSet[v] == False:
min = key[v]
min_index = v
return min_index
def primMST(self):
key = [sys.maxsize] * self.V
parent = [None] * self.V
key[0] = 0
mstSet = [False] * self.V
parent[0] = -1
for cout in range(self.V):
u = self.minKey(key, mstSet)
mstSet[u] = True
for v in range(self.V):
if self.graph[u][v] > 0 and mstSet[v] == False and key[v] > self.graph[u][v]:
key[v] = self.graph[u][v]
parent[v] = u
self.printMST(parent)
g = Graph(5)
g.graph = [ [0, 2, 0, 6, 0],
[2, 0, 3, 8, 5],
[0, 3, 0, 0, 7],
[6, 8, 0, 0, 9],
[0, 5, 7, 9, 0]]
g.primMST();
I have a set of inequalities that I want to find a (trivial) solution.
When I use the Exists operator, everything works great, as you can see in this Z3 script and in its Z3Py version.
#!/bin/python
from z3 import *
# we have that
s = Solver()
## mu0_px is the initial marking for place px;
mu_p1, mu_p2, mu_p3 = 0, 0, 1
## pi_tj is the pre-condition from place pi to transition tj
p1_t1, p1_t2, p1_t3 = 1, 0, 0
p2_t1, p2_t2, p2_t3 = 0, 1, 0
p3_t1, p3_t2, p3_t3 = 0, 0, 1
## tj_pi is the post-condition from transition tj to place pi
t1_p1, t2_p1, t3_p1 = 0, 1, 0
t1_p2, t2_p2, t3_p2 = 1, 0, 0
t1_p3, t2_p3, t3_p3 = 0, 0, 0
## find the values for the faulty transitions
f_p1, p1_f = Ints('f_p1 p1_f')
f_p2, p2_f = Ints('f_p2 p2_f')
f_p3, p3_f = Ints('f_p3 p3_f')
# where they should be
s.add( f_p1 == 1, f_p2 == 0, f_p3 == 0 )
s.add( p1_f == 0, p2_f == 0, p3_f == 1 )
## l \in Naturals ;
l11 = Int('l11')
# Sequence 11: t1,t2,t3
s11_t1, s11_t2, s11_t3 = 1, 1, 0
# It does works! :o
s.add( l11 == 1 )
s.add(
Exists([l11],
Or(
mu_p1 + (t1_p1-p1_t1)*s11_t1 + (t2_p1-p1_t2)*s11_t2 + (t3_p1-p1_t3)*s11_t3 + l11 * (f_p1 - p1_f) < p1_t3,
mu_p2 + (t1_p2-p2_t1)*s11_t1 + (t2_p2-p2_t2)*s11_t2 + (t3_p2-p2_t3)*s11_t3 + l11 * (f_p2 - p2_f) < p2_t3,
mu_p3 + (t1_p3-p3_t1)*s11_t1 + (t2_p3-p3_t2)*s11_t2 + (t3_p3-p3_t3)*s11_t3 + l11 * (f_p3 - p3_f) < p3_t3,
)
)
)
print(s)
print(s.check())
print(s.model())
However, when I replace the existential quantifier by Forall as in this link, and in the Python code below, there is no solution when I believe that it should still be sat.
#!/bin/python
from z3 import *
# we have that
s = Solver()
## mu0_px is the initial marking for place px;
mu_p1, mu_p2, mu_p3 = 0, 0, 1
## pi_tj is the pre-condition from place pi to transition tj
p1_t1, p1_t2, p1_t3 = 1, 0, 0
p2_t1, p2_t2, p2_t3 = 0, 1, 0
p3_t1, p3_t2, p3_t3 = 0, 0, 1
## tj_pi is the post-condition from transition tj to place pi
t1_p1, t2_p1, t3_p1 = 0, 1, 0
t1_p2, t2_p2, t3_p2 = 1, 0, 0
t1_p3, t2_p3, t3_p3 = 0, 0, 0
## find the values for the faulty transitions
f_p1, p1_f = Ints('f_p1 p1_f')
f_p2, p2_f = Ints('f_p2 p2_f')
f_p3, p3_f = Ints('f_p3 p3_f')
# where they should be
s.add( f_p1 == 1, f_p2 == 0, f_p3 == 0 )
s.add( p1_f == 0, p2_f == 0, p3_f == 1 )
## l \in Naturals ;
l11 = Int('l11')
# Sequence 11: t1,t2,t3
s11_t1, s11_t2, s11_t3 = 1, 1, 0
# It does not work! :(
s.add( l11 == 1 )
s.add(
ForAll([l11],
Or(
mu_p1 + (t1_p1-p1_t1)*s11_t1 + (t2_p1-p1_t2)*s11_t2 + (t3_p1-p1_t3)*s11_t3 + l11 * (f_p1 - p1_f) < p1_t3,
mu_p2 + (t1_p2-p2_t1)*s11_t1 + (t2_p2-p2_t2)*s11_t2 + (t3_p2-p2_t3)*s11_t3 + l11 * (f_p2 - p2_f) < p2_t3,
mu_p3 + (t1_p3-p3_t1)*s11_t1 + (t2_p3-p3_t2)*s11_t2 + (t3_p3-p3_t3)*s11_t3 + l11 * (f_p3 - p3_f) < p3_t3,
)
)
)
print(s)
print(s.check())
print(s.model())
Did anyone ever have a problem like this before?
The variable l11 as you declared and the one that gets used in the quantification are totally different: In particular, you stating it equals 1 have no bearing in the quantified formula. So you get sat with existential but unsat with universal since the formula is clearly not true for all values of l11.
This might be confusing, but it is the intended behaviour. To see the effect, simply print the smtlib equivalent and you’ll see how the variables are assigned.
I understand how and why to use an ImageDataGenerator, but I am interested in casting an eyeball on how the ImageDataGenerator affects my images so I can decide whether I have chosen a good amount of latitude in augmenting my data. I see that I can iterate over the images coming from the generator. I am looking for a way to see whether it's an original image or a modified image, and if the latter what parameters were modified in that particular instance I'm looking at. How/can I see this?
Most of the transformations (except flipping) will always modify the input image. For example, if you've specified rotation_range, from the source code:
theta = np.pi / 180 * np.random.uniform(-self.rotation_range, self.rotation_range)
it's unlikely that the random number will be exactly 0.
There's no convenient way to print out the amount of transformations applied to each image. You have to modify the source code and add some printing functions inside ImageDataGenerator.random_transform().
If you don't want to touch the source code (for example, on a shared machine), you can extend ImageDataGenerator and override random_transform().
import numpy as np
from keras.preprocessing.image import *
class MyImageDataGenerator(ImageDataGenerator):
def random_transform(self, x, seed=None):
# these lines are just copied-and-pasted from the original random_transform()
img_row_axis = self.row_axis - 1
img_col_axis = self.col_axis - 1
img_channel_axis = self.channel_axis - 1
if seed is not None:
np.random.seed(seed)
if self.rotation_range:
theta = np.pi / 180 * np.random.uniform(-self.rotation_range, self.rotation_range)
else:
theta = 0
if self.height_shift_range:
tx = np.random.uniform(-self.height_shift_range, self.height_shift_range) * x.shape[img_row_axis]
else:
tx = 0
if self.width_shift_range:
ty = np.random.uniform(-self.width_shift_range, self.width_shift_range) * x.shape[img_col_axis]
else:
ty = 0
if self.shear_range:
shear = np.random.uniform(-self.shear_range, self.shear_range)
else:
shear = 0
if self.zoom_range[0] == 1 and self.zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2)
transform_matrix = None
if theta != 0:
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
transform_matrix = rotation_matrix
if tx != 0 or ty != 0:
shift_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix)
if shear != 0:
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix)
if zx != 1 or zy != 1:
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix)
if transform_matrix is not None:
h, w = x.shape[img_row_axis], x.shape[img_col_axis]
transform_matrix = transform_matrix_offset_center(transform_matrix, h, w)
x = apply_transform(x, transform_matrix, img_channel_axis,
fill_mode=self.fill_mode, cval=self.cval)
if self.channel_shift_range != 0:
x = random_channel_shift(x,
self.channel_shift_range,
img_channel_axis)
if self.horizontal_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_col_axis)
if self.vertical_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_row_axis)
# print out the trasformations applied to the image
print('Rotation:', theta / np.pi * 180)
print('Height shift:', tx / x.shape[img_row_axis])
print('Width shift:', ty / x.shape[img_col_axis])
print('Shear:', shear)
print('Zooming:', zx, zy)
return x
I just add 5 prints at the end of the function. Other lines are copied and pasted from the original source code.
Now you can use it with, e.g.,
gen = MyImageDataGenerator(rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.5)
flow = gen.flow_from_directory('data', batch_size=1)
img = next(flow)
and see information like this printed on your terminal:
Rotation: -9.185074669096467
Height shift: 0.03791625365979884
Width shift: -0.08398553078553198
Shear: 0
Zooming: 1.40950509832 1.12895574928
While reading some CTF write-ups I came across this script
#!/usr/bin/env python
import struct
import Image
import dpkt
INIT_X, INIT_Y = 100, 400
def print_map(pcap, device):
picture = Image.new("RGB", (1200, 500), "white")
pixels = picture.load()
x, y = INIT_X, INIT_Y
for ts, buf in pcap:
device_id, = struct.unpack("b", buf[0x0B])
if device_id != device:
continue
data = struct.unpack("bbbb", buf[-4:])
status = data[0]
x = x + data[1]
y = y + data[2]
if (status == 1):
for i in range(-5, 5):
for j in range(-5, 5):
pixels[x + i , y + j] = (0, 0, 0, 0)
else:
pixels[x, y] = (255, 0, 0, 0)
picture.save("riverside-map.png", "PNG")
if __name__ == "__main__":
f = open("usb.pcap", "rb")
pcap = dpkt.pcap.Reader(f)
print_map(pcap, 5)
f.close()
And when I run it on my usb.pcap I get this error:
Traceback (most recent call last):
File "test.py", line 39, in <module>
print_map(pcap, n)
File "test.py", line 31, in print_map
pixels[x, y] = (255, 0, 0, 0)
IndexError: image index out of range
Why it is happening?
Depending on the dataset in your usb.pcap file, you may need to adjust the INIT_X and INIT_Y variables. The problem is that struct.unpack returns a signed value, so if the data is over 127 then it appears negative and you are exceeding the array boundaries. If the data is really always positive, you can test for that and force it to a positive value. Something like:
data = [item + 256 if item < 0 else item for item in data]
As Steve Cohen noticed your data is unsigned byte in range -128...127 but if these are indexes of the array than most probably they should be unsigned.
Python's struct has format characters for most cases, use the right ones:
data = struct.unpack("BBBB", buf[-4:]) # tuple of four unsigned bytes