Delphi interfaces and IList<T> (or TObjectList<T>) - delphi

I'm trying to implement Spring 4 Delphi and only program to interfaces instead of classes. However this seems impossible when you want to use a TObjectList.
Consider the following code:
unit Unit1;
interface
uses
Spring.Collections,
Spring.Collections.Lists;
type
IMyObjParent = interface
['{E063AD44-B7F1-443C-B9FE-AEB7395B39DE}']
procedure ParentDoSomething;
end;
IMyObjChild = interface(IMyObjParent)
['{E063AD44-B7F1-443C-B9FE-AEB7395B39DE}']
procedure ChildDoSomething;
end;
implementation
type
TMyObjChild = class(TInterfacedObject, IMyObjChild)
protected
procedure ParentDoSomething;
public
procedure ChildDoSomething;
end;
{ TMyObj }
procedure TMyObjChild.ChildDoSomething;
begin
end;
procedure TMyObjChild.ParentDoSomething;
begin
end;
procedure TestIt;
var
LMyList: IList<IMyObjChild>;
begin
TCollections.CreateObjectList<IMyObjChild>;
//[DCC Error] Unit1.pas(53): E2511 Type parameter 'T' must be a class type
end;
end.
I know I can change IMyObjChild to TMyObjChild in the example above, but if I need that in another unit or a form then how do I do this?
Trying to program only to interfaces seems too hard or impossible as soon as you need a TObjectList.
Grrr... Any ideas or help?

CreateObjectList has a generic constraint that its type parameter is a class:
function CreateObjectList<T: class>(...): IList<T>;
Your type parameter does not meet that constraint since it is an interface. The thing about an object list is that it holds objects. If you take a look at TObjectList in Spring.Collections.Lists you'll see that it also has the generic constraint that its type parameter is a class. And since CreateObjectList is going to create a TObjectList<T>, it must reflect the type constraint.
The raison d'ĂȘtre of TObjectList<T> is to assume ownership of its members through the OwnsObjects. Much in the same way as do the classic Delphi RTL classes of the same name. Of course you are holding interfaces and so you simply do not need this functionality. You should call CreateList instead. A plain TList<T> is what you need, even if you refer to it through the IList<T> interface.
LMyList := TCollections.CreateList<IMyObjChild>;

Related

Lazarus Error: Anonymous Class definitions are not allowed

I have to develop a game in Lazarus for school, and I ran into an error that I can't find a solution for.
I have a dynamic array where I want to store classes in so that I can call procedures on those classes.
TKarte is the ancestor class, and I have many different classes (all representing different Cards) that have the same procedures as the ancestor class.
unit Karten;
{$mode ObjFPC}{$H+}
interface
uses
Classes, SysUtils, Dialogs, ExtCtrls;
type
TKarte=class
public
class procedure GetPicture(Objekt:TImage);virtual;
class procedure OnPlay;virtual;
end;
type
Karte = class(TKarte)
public
class procedure GetPicture(Objekt:TImage);override;
class procedure OnPlay;override;
end;
type
Karte2 = class(TKarte)
public
class procedure GetPicture(Objekt:TImage);override;
class procedure OnPlay;override;
end;
implementation
class procedure Karte.OnPlay();
begin
ShowMessage(ClassName);
end;
class procedure Karte.GetPicture(Objekt:Timage);
begin
Objekt.Picture.LoadFromFile('Grafiken\Karten\Mindcontrol.png');
end;
class procedure Karte2.GetPicture(Objekt:Timage);
begin
Objekt.Picture.LoadFromFile('Grafiken\Karten\Mindcontrol.png');
end;
class procedure Karte2.OnPlay();
begin
ShowMessage(Karte2.ClassName);
end;
class procedure TKarte.OnPlay();
begin
ShowMessage(ClassName);
end;
class procedure TKarte.GetPicture(Objekt:TImage);
begin
Objekt.Picture.LoadFromFile('Grafiken\Sprites\Buttons\Button 1.png');
end;
end.
This is how I add them and call them from the array at the moment:
Hand: array of Class of TKarte;
procedure TSplashScreen.Button2Click(Sender: TObject);
begin
SetLength(Hand,Length(Hand)+1);
Hand[High(Hand)] := Karte;
Hand[High(Hand)].OnPlay();
Hand[High(Hand)].GetPicture(Image1);
end;
There is no problem with running the program, but when I try to add a new component, or I press CTRL + Space for the Auto-Complete, it gives me an error at the declaration of the array:
Error: Anonymous Class definitions are not allowed
I have tried to find an answer to this problem, but there seems to be noone with the same problem :(
Can somebody help me?
Offhand, I see nothing wrong with the code, and as you said the code does run correctly. It is only the IDE that is having a problem with it. As such, I would not suggest declaring the array's element type directly in the array's declaration. I would suggest declaring an alias for it before declaring the array, eg:
type
TKarte=class
...
end;
TKarteClass = Class of TKarte;
...
Hand: array of TKarteClass;
There are few problems in your code.
When creating array of some type you don't define the said type in the array itself but only tell which type needs to be used. So your array definition would be:
Hand: array of TKarte;
I also see that you have declared all your procedures as class procedure. There is a fundamental difference between class methods and ordinary methods. Most likely you won't need them to be declared as class methods based on what you are trying to achieve. While I could not find suitable Lazarus documentation on this topic you may refer to Delphi documentation on Class methods to get better understanding about their difference.

Inheriting from generic's parameter doesn't work in Delphi XE

I've been trying to extend a bunch of library classes inheriting from the same base class by overriding a virtual method defined in that base class. The modification is always the same so instead of creating N successors of the library classes I decided to create a generic class parameterized by the library class type, which inherits from the class specified by parameter and overrides the base class' method.
The problem is that the code below doesn't compile, the compiler doesn't allow inheriting from T:
program Project1;
type
LibraryBaseClass = class
procedure foo; virtual;
end;
LibraryClassA = class(LibraryBaseClass)
end;
LibraryClassB = class(LibraryBaseClass)
end;
LibraryClassC = class(LibraryBaseClass)
end;
LibraryClassD = class(LibraryBaseClass)
end;
MyClass<T:LibraryBaseClass> = class(T) //Project1.dpr(20) Error: E2021 Class type required
procedure foo; override;
end;
procedure LibraryBaseClass.foo;
begin
end;
procedure MyClass<T>.foo;
begin
end;
begin
MyClass<LibraryClassA>.Create.foo;
MyClass<LibraryClassB>.Create.foo;
MyClass<LibraryClassC>.Create.foo;
MyClass<LibraryClassD>.Create.foo;
end.
Any ideas how to make this work? Maybe there is a way to trick the compiler into accepting something equivalent because, for example, inheriting from Dictionary<T,T> compiles without problems.
Or what would you do if you had the same goal as I? Keep in mind that in the real situation I need to override more than one method and add some data members.
Thank you
As you've been told already, this is valid with C++ templates, not with C# or Delphi generics. The fundamental difference between templates and generics is that conceptually, each template instantiation is a completely separately compiled type. Generics are compiled once, for all possible types. That simply is not possible when deriving from a type parameter, because you could get constructs such as
type
LibraryBaseClass = class
procedure foo; virtual;
end;
LibraryClassA = class(LibraryBaseClass)
procedure foo; reintroduce; virtual;
end;
LibraryClassB = class(LibraryBaseClass)
end;
MyClass<T:LibraryBaseClass> = class(T)
procedure foo; override; // overrides LibraryClass.foo or LibraryClassA.foo ?
end;
Yet this can work in C++, because in C++ MyClass<LibraryClassA> and MyClass<LibraryClassB> are completely separated, and when instantiating MyClass<LibraryClassA>, foo is looked up and found in LibraryClassA before the base class method is found.
Or what would you do if you had the same goal as I? Keep in mind that in the real situation I need to override more than one method and add some data members.
It is possible to create types at runtime, but almost certainly an extremely bad idea. I have had to make use of that once and would have loved to avoid it. It involves reading the VMT, creating a copy of it, storing a copy of the original LibraryBaseClass.foo method pointer somewhere, modifying the VMT to point to a custom method, and from that overriding function, invoking the original stored method pointer. There's certainly no built-in language support for it, and there's no way to refer to your derived type from your code.
I've had a later need for this in C# once, too, but in that case I was lucky that there were only four possible base classes. I ended up manually creating four separate derived classes, implementing the methods four times, and using a lookup structure (Dictionary<,>) to map the correct base class to the correct derived class.
Note that there is a trick for a specific case that doesn't apply to your question, but may help other readers: if your derived classes must all implement the same interface, and requires no new data members or function overrides, you can avoid writing the implementation multiple times:
type
IMySpecialInterface = interface
procedure ShowName;
end;
TMySpecialInterfaceHelper = class helper for TComponent
procedure ShowName;
end;
procedure TMySpecialInterfaceHelper.ShowName;
begin
ShowMessage(Name);
end;
type
TLabelWithShowName = class(TLabel, IMySpecialInterface);
TButtonWithShowName = class(TButton, IMySpecialInterface);
In that case, the class helper method implementation will be a valid implementation for the interface method.
In Delphi XE and higher, you could also try something completely different: TVirtualMethodInterceptor.
What you are attempting to do is simply not possible with Delphi generics.
For what it is worth, the equivalent code is also invalid in C# generics. However, your design would work with C++ templates.
I probably misunderstood your description of the problem but from your simplified example it seems you could "turn it around" and insert a class in the hierarchy in the middle like this:
program Project1;
type
LibraryBaseClass = class
procedure foo; virtual;
end;
LibraryBaseFooClass = class(LibraryBaseClass)
procedure foo; override;
end;
LibraryClassA = class(LibraryBaseFooClass)
end;
LibraryClassB = class(LibraryBaseFooClass)
end;
LibraryClassC = class(LibraryBaseFooClass)
end;
LibraryClassD = class(LibraryBaseFooClass)
end;
procedure LibraryBaseClass.foo;
begin
end;
procedure LibraryBaseFooClass.foo;
begin
end;
begin
LibraryClassA.Create.foo;
LibraryClassB.Create.foo;
LibraryClassC.Create.foo;
LibraryClassD.Create.foo;
end.

Calling member functions dynamically

I'm pretty sure it's possible to call a class and its member function dynamically in Delphi, but I can't quite seem to make it work. What am I missing?
// Here's a list of classes (some code removed for clarity)
moClassList : TList;
moClassList.Add( TClassA );
moClassList.Add( TClassB );
// Here is where I want to call an object's member function if the
// object's class is in the list:
for i := 0 to moClassList.Count - 1 do
if oObject is TClass(moClassList[i]) then
with oObject as TClass(moClassList[i]) do
Foo();
I get an undeclared identifier for Foo() at compile.
Clarification/Additional Information:
What I'm trying to accomplish is to create a Change Notification system between business classes. Class A registers to be notified of changes in Class B, and the system stores a mapping of Class A -> Class B. Then, when a Class B object changes, the system will call a A.Foo() to process the change. I'd like the notification system to not require any hard-coded classes if possible. There will always be a Foo() for any class that registers for notification.
Maybe this can't be done or there's a completely different and better approach to my problem.
By the way, this is not exactly an "Observer" design pattern because it's not dealing with objects in memory. Managing changes between related persistent data seems like a standard problem to be solved, but I've not found very much discussion about it.
Again, any assistance would be greatly appreciated.
Jeff
First of all you're doing something very unusual with TList: TList is a list of UNTYPED POINTERS. You can add any pointer you want to that list, and when you're doing moClassList.Add( TClassA ) you're actually adding a reference to the class TClassA to the list. Technically that's not wrong, it's just very unusual: I'd expect to see TClassList if you actually want to add a class! Or TList<TClass> if you're using a Delphi version that support it.
Then you're looping over the content of the list, and you're checking if oObject is of the type in the list. So you do want classes in that list after all. The test will work properly and test rather the object is of that type, but then when you do with oObject as TClass(moClassList[i]) do you're actually casting the object to... TObject. Not what you wanted, I'm sure!
And here you have an other problem: Using Foo() in that context will probably not work. TObject doesn't contain a Foo() method, but an other Foo() method might be available in context: That's the problem with the with keyword!
And to finally answer the question in the title bar: Delphi is not an Dynamic language. The compiler can't call a method it doesn't know about at compile time. You'll need to find a OOP way of expressing what you want (using simple inheritance or interfaces), or you may call the function using RTTI.
Edited after question clarification.
All your business classes need to implement some kind of notification request management, so your design benefits allot from a base class. Declare a base class that implements all you need, then derive all your business classes from it:
TBusinessBase = class
public
procedure RegisterNotification(...);
procedure UnregisterNotification(...);
procedure Foo;virtual;abstract;
end;
In your initial example you'd no longer need the list of supported classes. You'll simply do:
oObject.Foo;
No need for type testing since Delphi is strongly typed. No need for casting since you can declare oObject": TBusinessBase.
Alternatively, if you for some reason you can't change the inheritance for all your objects, you can use interfaces.
TClass is defined:
TClass = class of TObject;
You then write oObject as TClass which is effectively a null operation since oObject already was a TObject.
What you need is something like this:
type
TFoo = class
procedure Foo();
end;
TFooClass = class of TFoo;
TBar = class(TFoo)
procedure Bar();
end;
....
if oObject is TFooClass(moClassList[i]) then
with oObject as TFooClass(moClassList[i]) do
Foo();
This explains why your attempts to call Foo() does not compile, but I simply have no idea what you are trying to achieve. Even after your clarification I'm struggling to understand the problem.
Here's a really contrived example (using an array instead of a TList) that I think is what you're trying to do (error handling and try..finally intentionally omitted for clarity).
program Project1;
{$APPTYPE CONSOLE}
uses
SysUtils;
type
TBaseClass=class(TObject)
procedure Foo; virtual;
end;
TClassA=class(TBaseClass)
procedure Foo; override;
end;
TClassB=class(TBaseClass)
procedure Foo; override;
end;
TClassArray= array of TBaseClass;
{ TClassB }
procedure TClassB.Foo;
begin
Writeln('TClassB.Foo() called.');
end;
{ TClassA }
procedure TClassA.Foo;
begin
Writeln('TClassA.Foo() called.');
end;
var
Base: TBaseClass;
ClassArr: TClassArray;
{ TBaseClass }
procedure TBaseClass.Foo;
begin
Writeln('TBaseClass.Foo called!!!!!!!!');
end;
begin
ClassArr := TClassArray.Create(TClassA.Create, TClassB.Create);
for Base in ClassArr do
Base.Foo;
for Base in ClassArr do
Base.Free;
ReadLn;
end.

Are GUIDs necessary to use interfaces in Delphi?

The official documentation says they are optional. I know COM interop requires a unique identifier for each interface but every interface example I see has a GUID whether it's used with COM or not? Is there any benefit to including a GUID if its not going to be used with COM?
I've noticed that some methods such as Supports (to determine if a class conforms to a specific interface) require that you define a GUID before you can use them.
This page confirms it with the following information:
Note: The SysUtils unit provides an
overloaded function called Supports
that returns true or false when class
types and instances support a
particular interface represented by a
GUID. The Supports function is used in
the manner of the Delphi is and as
operators. The significant difference
is that the Supports function can take
as the right operand either a GUID or
an interface type associated with a
GUID, whereas is and as take the name
of a type. For more information about
is and as, see Class References.
Here's some interesting information about interfaces, which states:
Why does an interface need to be
uniquely identifiable? The answer is
simple: because Delphi classes can
implement multiple interfaces. When an
application is running, there has to
be a mechanism that will get pointer
to an appropriate interface from an
implementation. The only way to find
out if an object implements an
interface and to get a pointer to
implementation of that interface is
through GUIDs.
Emphasis added in both quotes.
Reading this entire article also makes you realize that QueryInterface (which requires a GUID) is used behind the scenes for reasons such as reference counting.
Only if you need your interface to be compatible with COM.
Unfortunately, that also includes using is, as operators and QueryInterface, Supports functions - the lack of which is rather limiting. So, while not strictly required, it's probably easier to use a GUID. Otherwise, you are left with rather simplistic usage only:
type
ITest = interface
procedure Test;
end;
ITest2 = interface(ITest)
procedure Test2;
end;
TTest = class(TInterfacedObject, ITest, ITest2)
public
procedure Test;
procedure Test2;
end;
procedure TTest.Test;
begin
Writeln('Test');
end;
procedure TTest.Test2;
begin
Writeln('Test2');
end;
procedure DoTest(const Test: ITest);
begin
Test.Test;
end;
procedure DoTest2(const Test: ITest2);
begin
Test.Test;
Test.Test2;
end;
procedure Main;
var
Test: ITest;
Test2: ITest2;
begin
Test := TTest.Create;
DoTest(Test);
Test := nil;
Test2 := TTest.Create;
DoTest(Test2);
DoTest2(Test2);
end;

RTTI: Can I Get a Type by Name?

Given a text string containing a type name, is there some way to get the appropriate type itself?
I'm looking to do something like this:
type
TSomeType<T> = class
// yadda yadda
end;
procedure DoSomething;
var
obj : TObject;
begin
o := TSomeType<GetTypeByName('integer')>.Create;
// do stuff with obj
end;
I've looked at several RTTI explanations online and looked through the Delphi units and don't see what I'm looking for. Is this possible?
No, generics are entirely compiletime.
The new RTTI unit in Delphi 2010 has a way of retrieving types declared in the interface section of units. For any given type, represented by a TRttiType instance, the TRttiType.QualifiedName property returns a name that can be used with TRttiContext.FindType later to retrieve the type. The qualified name is the full unit name (including namespaces, if they exist), followed by a '.', followed by the full type name (including outer types if it nested).
So, you could retrieve a representation of the Integer type (in the form of a TRttiType) with context.FindType('System.Integer').
But this mechanism can't be used to retrieve instantiations of generic types that weren't instantiated at compile time; instantiation at runtime requires runtime code generation.
You can always register your types into some sort of registry (managed by a string list or dictionary) and create a factory function to then return the appropriate object. Unfortunately you would have to know in advance what types you were going to need. Something similar to the Delphi functions RegisterClass and FindClass (in the classes unit). My thinking is to put the generic template type into the list directly.
An example of possible usage:
RegisterCustomType('Integer',TSomeType<Integer>);
RegisterCustomType('String',TSomeType<String>);
if FindCustomType('Integer') <> nil then
O := FindCustomType('Integer').Create;
EDIT: Here is a specific simple implementation using a tDictionary from Generics.Collections to handle the registry storage...I'll leave extracting this into useful methods as a simple exercise for the reader.
var
o : TObject;
begin
TypeDict := TDictionary<String,TClass>.Create;
TypeDict.Add('integer',TList<integer>);
if TypeDict.ContainsKey('integer') then
o := TypeDict.Items['integer'].Create;
if Assigned(o) then
ShowMessage(o.ClassName);
end;
Another EDIT: I was giving this some thought last night, and discovered another technique that you can merge into this concept. Interfaces. Here is a quick do nothing example, but can easily be extended:
TYPE
ITest = interface
['{0DD03794-6713-47A0-BBE5-58F4719F494E}']
end;
TIntfList<t> = class(TList<T>,ITest)
public
function QueryInterface(const IID: TGUID; out Obj): HRESULT; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
end;
procedure TForm1.Button7Click(Sender: TObject);
var
o : TObject;
fTestIntf : ITest;
begin
TypeDict := TDictionary<String,TClass>.Create;
TypeDict.Add('integer',TIntfList<integer>);
if TypeDict.ContainsKey('integer') then
o := TypeDict.Items['integer'].Create;
if Assigned(o) and Supports(o,ITest,fTestIntf) then
ShowMessage(o.ClassName);
end;
of course you would have to implement the QueryInterface, _AddRef and _Release methods and extend the interface to do something more useful.
If you forget generics and basic types, the "RegisterClass" function would be helpful. But it doesn't work for generics or basic types.

Resources