I have a function that is called three times in quick succession, and it needs to generate a pseudorandom integer between 1 and 6 on each pass. However I can't manage to get enough entropy out of the function.
I've tried seeding math.randomseed() with all of the following, but there's never enough variation to affect the outcome.
os.time()
tonumber(tostring(os.time()):reverse():sub(1,6))
socket.gettime() * 1000
I've also tried this snippet, but every time my application runs, it generates the same pattern of numbers in the same order. I need different(ish) numbers every time my application runs.
Any suggestions?
Bah, I needed another zero when multiplying socket.gettime(). Multiplied by 10000 there is sufficient distance between the numbers to give me a good enough seed.
Related
I am working on a data set of more than 22,000 records, and when I tried it with the apriori model, it's taking way too much time even for small number of records like 20. Is there a problem in my code or Is there a faster way to convert the asscocians into a list quickly? The code I used is below.
for i in range(0, 20):
transactions.append([str(dataset.values[i,j]) for j in range(0, 543)])
from apyori import apriori
associations = apriori(transactions, min_support=0.004, min_confidence=0.3, min_lift=3, min_length=2)
result = list(associations)
It's difficult to assess without your data, but the complexity of Apriori is based on a number of factors, including your support threshold, number of transactions, number of items, average/max transaction length, etc.
In cases where even a small number of transactions is taking a long time to run it's often a matter of too low of a minimum support. When support is very low (near 0) the algorithm is effectively still brute forcing, since it has to look at all possible combinations of items, of every length. This is the equivalent of a mathematical power set, which is exponential. For just 41 items you're actually trying 2^41 -1 possible combinations, which is just over 1.1 TRILLION possibilities.
I recommend starting with a "high" min_support at first (e.g. 0.20) and then working your way down slowly. It's easier to test things that take seconds at first than ones that'll take a long time.
Other important note: There is no min_length parameter in Apyori. I'm not sure where everyone's getting that from (you're not alone in thinking there is one), unless it's this one random blog post I found. The parameters are as follows (straight from the code):
Keyword arguments:
min_support -- The minimum support of relations (float).
min_confidence -- The minimum confidence of relations (float).
min_lift -- The minimum lift of relations (float).
max_length -- The maximum length of the relation (integer).
For what it's worth, I wrote unofficial docs for Apyori that can be found here.
So in Lua it's common knowledge that you can use math.randomseed but it's also obvious that math.random sets the seed as well (calling it twice does not return the same result), what does it set it to, and how can I keep track of it, and if it's impossible, please explain why that is so.
This is not a Lua question, but general question on how some RNG algorithm works.
First, Lua don't have their own RNG - they just output you (slightly mangled) value from RNG of underlying C library. Most RNG implementations do not reveal you their inner state, but sometimes you can caclulate it yourself.
For example when you use Lua on Windows, you'll be using LCG-based RNG from MS C library. The numbers you get is a slice of seed, not full value. There are two ways you can deal with that:
If you know how many times you called random, you can just take initial seed value, feed it to your copy of the same algorithm with same constants that are hardcoded in MS library and get exact value of seed.
If you don't, but you can be sure that nobody interferes in between your two calls to random, you can get two generated numbers, and reverse LCG algorithm by shifting bits back to their place. This will leave you with several missing bits (with one more bit thanks to Lua mangling) that you will need to simply bruteforce - just reiterate over all missing bits until your copy of algorithm produces exactly same two "random" numbers you've recorded before. That will be current seed stored inside library's RNG as well. Well programmed solution in Lua can bruteforce this in about 0.2-0.5s on somewhat dated PC - I did it past. Here's example on Crypto.SE talking about this task in more details: Predicting values from a Linear Congruential Generator.
First approach can be used with any other RNG algorithm that doesn't use any real entropy, second with most RNGs that don't mask too much bits in slice to make bruteforcing unreasonable.
Real answer though is: you don't need to keep track of seed at all. What you want is probably something else.
If you set a seed all numbers math.random() generates are pseudo-random (This is always the case as the system will generate a seed by itself).
math.randomseed(4)
print(math.random())
print(math.random())
math.randomseed(4)
print(math.random())
Outputs
0.50827539156303
0.75454387490399
0.50827539156303
So if you reset the seed to the same value you can predict all values that are going to come up to the maximum number of consecutive values that you already generated using that seed.
What the seed does not do is keep the output of math.random() the same. It would be the same if you kept resetting it to the same value.
An analogy as an example
Imagine the random number is an integer between 0 and 9 (instead of a double between 0 and 1).
math.random() could traverse pi's decimals from an arbitrary starting position (default could be system time).
What you do when you use set.seed() is (not literally, this is an analogy as mentioned) set the starting decimals of where in pi you are going to retrieve your numbers.
If you now reset the seed to the same starting position the numbers are going to be the same as the last time you reset the starting position.
You will know the numbers of to the last call, after that you can't be certain anymore.
I'm making an iOS dice game and one beta tester said he liked the idea that the rolls were already predetermined, as I use arc4random_uniform(6). I'm not sure if they are. So leaving aside the possibility that the code may choose the same number consecutively, would I generate a different number if I tapped the dice in 5 or 10 seconds time?
Your tester was probably thinking of the idea that software random number generators are in fact pseudo-random. Their output is not truly random as a physical process like a die roll would be: it's determined by some state that the generators hold or are given.
One simple implementation of a PRNG is a "linear congruential generator": the function rand() in the standard library uses this technique. At its core, it is a straightforward mathematical function, and each output is generated by feeding in the previous one as input. It thus takes a "seed" value, and -- this is what your tester was thinking of -- the sequence of output values that you get is completely determined by the seed value.
If you create a simple C program using rand(), you can (must, in fact) use the companion function srand() (that's "seed rand") to give the LCG a starting value. If you use a constant as the seed value: srand(4), you will get the same values from rand(), in the same order, every time.
One common way to get an arbitrary -- note, not random -- seed for rand() is to use the current time: srand(time(NULL)). If you did that, and re-seeded and generated a number fast enough that the return of time() did not change, you would indeed see the same output from rand().
This doesn't apply to arc4random(): it does not use an LCG, and it does not share this trait with rand(). It was considered* "cryptographically secure"; that is, its output is indistinguishable from true, physical randomness.
This is partly due to the fact that arc4random() re-seeds itself as you use it, and the seeding is itself based on unpredictable data gathered by the OS. The state that determines the output is entirely internal to the algorithm; as a normal user (i.e., not an attacker) you don't view, set, or otherwise interact with that state.
So no, the output of arc4random() is not reliably repeatable by you. Pseudo-random algorithms which are repeatable do exist, however, and you can certainly use them for testing.
*Wikipedia notes that weaknesses have been found in the last few years, and that it may no longer be usable for cryptography. Should be fine for your game, though, as long as there's no money at stake!
Basically, it's random. No it is not based around time. Apple has documented how this is randomized here: https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man3/arc4random_uniform.3.html
I have a 2 part question regarding downsampling on OpenTSDB.
The first is I was wondering if anyone knows whether OpenTSDB takes the last end point inclusive or exclusive when it calculates downsampling, or does it count the end data point twice?
For example, if my time interval is 12:30pm-1:30pm and I get DPs every 5 min starting at 12:29:44pm and my downsample interval is summing every 10 minute block, does the system take the DPs from 12:30-12:39 and summing them, 12:40-12:49 and sum them, etc or does it take the DPs from 12:30-12:40, then from 12:40-12:50, etc. Yes, I know my data is off by 15 sec but I don't control that.
I've tried to calculate it by hand but the data I have isn't helping me. The numbers I'm calculating aren't adding up to the above, nor is it matching what the graph is showing. I don't have access to the system that's pushing numbers into OpenTSDB so I can't setup dummy data to check.
The second question is how does downsampling plot its points on the graph from my time range and downsample interval? I set downsample to sum 10 min blocks. I set my range to be 12:30pm-1:30pm. The graph shows the first point of the downsampled graph to start at 12:35pm. That makes logical sense.I change the range to be 12:24pm-1:29pm and expected the first point to start at 12:30 but the first point shown is 12:25pm.
Hopefully someone can answer these questions for me. In the meantime, I'll continue trying to find some data in my system that helps show/prove how downsampling should work.
Thanks in advance for your help.
Downsampling isn't currently working the way you expect, although since this is a reasonable and commonly made expectations, we are thinking of changing this in a later release of OpenTSDB.
You're assuming that if you ask for a "10 min sum", the data points will be summed up within each "round" (or "aligned") 10 minute block (e.g. 12:30-12:39 then 12:40-12:49 in your example), but that's not what happens. What happens is that the code will start a 10-minute block from whichever data point is the first one it finds. So if the first one is at time 12:29:44, then the code will sum all subsequent data points until 600 seconds later, meaning until 12:39:44.
Within each 600 second block, there may be a varying number of data points. Some blocks may have more data points than others. Some blocks may have unevenly spaced data points, e.g. maybe all the data points are within one second of each other at the beginning of the 600s block. So in order to decide what timestamp will result from the downsampling operation, the code uses the average timestamp of all the data points of the block.
So if all your data points are evenly spaced throughout your 600s block, the average timestamp will fall somewhere in the middle of the block. But if you have, say, all the data points are within one second of each other at the beginning of the 600s block, then the timestamp returned will reflect that by virtue of being an average. Just to be clear, the code takes an average of the timestamps regardless of what downsampling function you picked (sum, min, max, average, etc.).
If you want to experiment quickly with OpenTSDB without writing to your production system, consider setting up a single-node OpenTSDB instance. It's very easy to do as is shown in the getting started guide.
I am trying to get a random number of 0-20 like so
RandomRange(0, 20)
I know alot of software when using there built in function for random it will give the same random numbers each time the program is ran, thus not so random.. Does RandomRange act this way? I could not test as not near programming computer. If Answer is yes, then how can i get a Really Random number?
Thanks
http://www.delphibasics.co.uk/RTL.asp?Name=Random
http://www.delphibasics.co.uk/RTL.asp?Name=Randomize
The Randomize command will re-seed the random number generator based on the current time of day. With that, the only way you'll get the exact same sequence of "random" numbers is if you run the program at exactly the same time of day (usually measured down to fractions of a second for these kinds of purposes).
EDIT: You can also use RandSeed (http://www.delphibasics.co.uk/RTL.asp?Name=RandSeed) to select the seed yourself. This is useful if you want to test the same sequence multiple times, for debugging, or want to randomize based on some other seed than time of day.