I have been using Core Data with a single NSManagedObjectContext for a long time, all fetching, saving, background update operations will be done on single context through helper classes, I was planning to implement a multiple NSManagedObjectContext approach (which is the recommended solution in most of my searching).
My question is: is performBlock the only was to execute code for that context? Can't we do something like below:
- (void) checkSyncServer {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0), ^{
//do something here, check and fetch data
// create NSManagedObject's
[_tempContext save:&error];
//masterContext will merge changes through notification observers
});
}
(i.e) execute code apart from -performBlock method. How can I execute multiple asynchronous methods and perform a save?
However, I find a single context (which is managed by one singleton NSObject class) simpler to use.
This multiple context with ContextConcurrencyType looks more complicated (in terms of execution flow). Is there a better solution?
You can access contexts in one of two ways:
On its Thread/Queue. This applies to confined contexts and main queue contexts. You can access them freely from their own thread.
With -performBlock: if it is a private queue context or if you are touching the context from a thread other than the one it belongs on.
You cannot use dispatch_async to access a context. If you want the action to be asynchronous then you need to use -performBlock:.
If you were using a single context before and you were touching it with a dispatch_async you were violating the thread confinement rule.
Update
When you call [[NSManagedObjectContext alloc] init] that is functionally equivalent to [[NSManagedObjectContext alloc] initWithConcurrencyType:NSConfinementConcurrencyType].
The NSManagedObjectContext has always been thread confined.
As for executing multiple methods you can just call them all in the same block:
NSManagedObjectContext *moc = ...;
[moc performBlock:^{
//Fetch something
//Process data
//Save
}];
Or you could nest them if you wanted them to be all async of each other:
NSManagedObjectContext *moc = ...;
[moc performBlock:^{
//Fetch Something
[moc performBlock:^{
//Process Data
}];
[moc performBlock:^{
//Save
}];
}];
Since -performBlock: is re-entrant safe you can nest them all you want.
Update Async save
To do an async save you should have two contexts (or more):
Main Queue context that the UI talks to
Private Queue context that saves
Private context has a NSPersistentStoreCoordinator and the main queue context has the private as its parent.
All work is done in the main queue context and you can save it safely, normally on the main thread. That save will be instantaneous. Afterwards, you do an async save:
NSManagedObjectContext *privateMOC = ...;
NSManagedObjectContext *mainMOC = ...;
//Do something on the mainMOC
NSError *error = nil;
if (![mainMOC save:&error]) {
NSLog(#"Main MOC save failed: %#\n%#", [error localizedDescription], [error userInfo]);
abort();
}
[privateMOC performBlock:^{
NSError *error = nil;
if (![privateMOC save:&error]) {
NSLog(#"Private moc failed to write to disk: %#\n%#", [error localizedDescription], [error userInfo]);
abort();
}
}];
If you already have an app, all you need to do is:
Create your private moc
Set it as the parent of your main
Change your main's init
Add the private block save method whenever you call save on your main
You can refactor from there but that is all you really need to change.
Related
I'm having difficulties trying to figure out how to use Core Data concurrently and properly.
I have to clear Core Data of an entity before adding new data every time there is an update. Therefore I've decided to use this snippet:
-(void)addSale:(NSArray *)results{
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
NSString *entity = #"Sale";
CoreDataManager.sharedInstance.delegate = self;
dispatch_async(dispatch_get_main_queue(), ^{
[CoreDataManager.sharedInstance deleteEntityWithName:entity];
});
NSManagedObjectContext *privateContext = [[NSManagedObjectContext alloc] initWithConcurrencyType:NSPrivateQueueConcurrencyType];
privateContext.parentContext = CoreDataManager.sharedInstance.managedObjectContext;
for (NSDictionary *dataDictionary in [results valueForKey:#"Sales"])
{
NSManagedObject *managedObject = [NSEntityDescription insertNewObjectForEntityForName:entity inManagedObjectContext:privateContext];
// Fill ManagedObject
// .....
}
NSError *error;
[privateContext save:&error];
if (error != nil) {
NSLog(#"Couldn't save private context bcoz of %#\n%#", error, error.localizedDescription);
}
dispatch_async(dispatch_get_main_queue(), ^{
// Save Main ManagedObjectContext
[CoreDataManager.sharedInstance saveContext:CoreDataManager.sharedInstance.managedObjectContext WithEntityName:entity];
});
});
}
Problem is that I have to do the same thing for 2 other entities while keeping the UI responsive without having any impacts on the Core Data.
Is there any better approaches to handle this?
Create a private context associated with the NSPersistentStoreCoordinator.
Delete objects in the private context.
Save private context.
Tell main queue context to reset if any of those objects were being used.
There really is no reason to delete objects on the main context (which it appears you are doing with your singleton).
If your UI has not touched any of the objects you are deleting then you do not need to reset the context associated with the User Interface.
You could also, instead of doing a reset, have the main queue context consume the save notification from the private queue context and that will net the same result.
There are two Entities- Document and Page. Document has a one-to-many relationship with Page.
I save the managed object context when I add document. At this point, there are no pages in them. While debugging I found that the writer context's save method does get called and is executed without error. I close and reopen the app and I can't find the previously saved Document objects. But, if I add a page in one of the document, then, the Document object appear in the table. I use a tool to view the SQLite file but my observation is not based on what I see in the tool. Even when I debug and see the number of documents present, I get 0 back when there is no page in them.
I am guessing that the Persistent Store Coordinator is doing some kind of optimization to write in batch. Can I force it to write and update the persistent store immediately? Is there a option that I can add while calling addPersistentStoreWithType on the persistent store object?
Note: Just FYI, I use this pattern to organize the Managed Object Context(s)
Fixed the issue. Here is the update
So, I was saving the whole stack all the way up to the writer context. The bug was very silly. I was trying to save the main context on the main thread like this:
- (void)saveMainContext {
[self.mainManagedObjectContext performBlock:^{
// Ensure that the main object context is being saved on the main queue
__block NSError *error = nil;
dispatch_async(dispatch_get_main_queue(), ^{
[self.mainManagedObjectContext save:&error];
});
if(!error)
{
//Write to disk after saving on the main UI context
[self saveWriterContext];
}
}];
}
As you can see, after trying to save the main context, I save the writer context. But, the bug was that I wasn't waiting for the main context to finish saving. After fixing the bug, my code looks like this:
- (void)saveMainContext {
[self.mainManagedObjectContext performBlock:^{
// Ensure that the main object context is being saved on the main queue
dispatch_async(dispatch_get_main_queue(), ^{
NSError *error = nil;
[self.mainManagedObjectContext save:&error];
if(!error)
{
//Write to disk after saving on the main UI context
[self saveWriterContext];
}
});
}];
}
And, this fixed the issue! Very silly mistake on my part.
Are you making sure you are saving your entire stack? If you make a change in a private context you need to save that private context. If you make a change in the main context (from the UI) then you need to save that context. Only after all of your other contexts report NO to -hasChanges should you save the writer context (aka the master context in his design).
I suspect that is your issue.
Response to OP
Hmm. Did not know that. Thanks! So, are you suggesting that I may be well off if I do not check for "error" at all, and just check for the save's return?
What I am saying is that your save should look like this (note I also correct your unnecessary dispatch_async):
- (void)saveMainContext {
[self.mainManagedObjectContext performBlock:^{
// Ensure that the main object context is being saved on the main queue
NSError *error = nil;
if (![[self mainManagedObjectContext] save:&error]) {
NSLog("Failed to save context: %#\n%#", [error localizedDescription], [error userInfo]);
exit(1);
}
[self saveWriterContext];
}];
}
The dispatch_async will be ignored because you are already on the right queue.
The call to -save: returns a bool. If and ONLY if that returns NO do you react to the error.
I'm trying to separate my application work when there is a bigger work to do to optimize performance. My problem is about a NSManagedObjectContext used in another thread than the main one.
I'm calling:
[NSThread detachNewThreadSelector:#selector(test:) toTarget:self withObject:myObject];
On the test method there are some stuff to do and I have a problem here:
NSArray *fetchResults = [moc
executeFetchRequest:request
error:&error];
Here is my test method:
-(void) test:(MyObject *)myObject{
#autoreleasepool {
//Mycode
}
}
The second time I call the test method, my new thread is blocked when the executeFetchRequest is called.
This problem arrived when my test method is called more than one time in succession. I think the problem comes from the moc but I can't really understand why.
Edit:
With #Charlie's method it's almost working. Here is my code to save my NSManagedObjectContext (object created on my new thread).
- (void) saveContext:(NSManagedObjectContext *) moc{
NSError *error = nil;
if ([moc hasChanges] && ![moc save:&error]) {
NSLog(#"Unresolved error %#, %#", error, [error userInfo]);
}
}
This method is called on the new thread. My problem now is that with this save, I have a deadlock and I don't really understand why. Without it's perfectly working.
Edit2
I'm working on this issue but I still can't fix it. I changed my code about the detachNewThreadSelector. Here is my new code:
NSManagedObjectContext* context = [[NSManagedObjectContext alloc]
initWithConcurrencyType:NSPrivateQueueConcurrencyType];
context.persistentStoreCoordinator = self.persistentStoreCoordinator;
context.undoManager = nil;
[context performBlock:^
{
CCImages* cachedImage;
NSManagedObjectContext *childContext = [[NSManagedObjectContext alloc] initWithConcurrencyType:NSPrivateQueueConcurrencyType];
childContext.parentContext = context;
cachedImage=[CCImages getCCImageForKey:path inManagedObjectContext:childContext];
UIImage *image = [self getImageFromCacheWithPath:path andCachedImage:cachedImage atDate:now];
if (image != nil){
if(![weakSelf.delegate respondsToSelector:#selector(CacheCacheDidLoadImageFromCache:)])
[weakSelf setDelegate:appDelegate.callbacksCollector];
//[weakSelf useCallbackCollectorForDelegate:weakSelf inMethod:#"initPaginatorForListMoments"];
[weakSelf.delegate CacheCacheDidLoadImageFromCache:image];
}
}
- (UIImage*) getImageFromCacheWithPath:(NSString*) path andCachedImage:(CCImages *) cachedImage atDate: (NSDate *) now{
NSURL* localURL=[NSURL URLWithString:cachedImage.path relativeToURL:[self imageCacheDirectory]];
UIImage * image;
//restore uiimage from local file system
if (localURL) {
image=[UIImage imageWithContentsOfFile:[localURL path]];
//update cache
[cachedImage setLastAccessedAt:now];
[self saveContext];
if(image)
return image;
}
return nil;
}
Just after that, I'm saving my contexts (manually for now)
[childContext performBlock:^{
NSError *error = nil;
if (![childContext save:&error]) {
DDLogError(#"Error during context saving when getting image from cache : %#",[error description]);
}
else{
[context performBlock:^{
NSError *error = nil;
if (![context save:&error]) {
DDLogError(#"Error during context saving when getting image from cache : %#",[error description]);
}
}];
}
}];
There is a strange problem. My call back method is called without any problem on my controller (which implements the CacheCacheDidLoadImageFromCache: method). On this method I attest the reception of the image (DDLogInfo) and say that I want my spinner to stop. It does not directly but only 15secondes after the callback method was called.
My main problem is that my context (I guess) is still loading my image from the cache while it was already found. I said 'already' because the callback method has been called and the image was present. There is no suspicious activity of the CPU or of the memory. Instruments didn't find any leak.
I'm pretty sure that I'm using wrongly the NSManagedObjectContext but I can't find where.
You are using the old concurrency model of thread confinement, and violating it's rules (as described in the Core Data Concurrency Guide, which has not been updated yet for queue confinement). Specifically, you are trying to use an NSManagedObjectContext or NSManagedObject between multiple threads.
This is bad.
Thread confinement should not be used for new code, only to maintain the compatibility of old code while it's being migrated to queue confinement. This does not seem to apply to you.
To use queue confinement to solve your problem, first you should create a context attached to your persistent store coordinator. This will serve as the parent for all other contexts:
+ (NSManagedObjectContent *) parentContextWithPersistentStoreCoordinator:(NSPersistentStoreCoordinator *)coordinator {
NSManagedObjectContext *result = nil;
result = [[NSManagedObjectContext alloc] initWithConcurrencyType:NSPrivateQueueConcurrencyType];
[result setPersistentStoreCoordinator:coordinator];
return result;
}
Next, you want the ability to create child managed object contexts. You will use these to perform work on the data, wether reading or writing. An NSManagedObjectContext is a scratchpad of the work you are doing. You can think of it as a transaction. For example, if you're updating the store from a detail view controller you would create a new child context. Or if you were performing a multi-step import of a large data set, you would create a child for each step.
This will create a new child context from a parent:
+ (NSManagedObjectContext *) childContextWithParent:(NSManagedObjectContext *)parent {
NSManagedObjectContext *result = nil;
result = [[NSManagedObjectContext alloc] initWithConcurrencyType:NSPrivateQueueConcurrencyType];
[result setParent:parent];
return result;
}
Now you have a parent context, and you can create child contexts to perform work. To perform work on a context, you must wrap that work in performBlock: to execute it on the context's queue. I do not recommend using performBlockAndWait:. That is intended only for re-rentrant methods, and does not provide an autorelease pool or processing of user events (user events are what drives nearly all of Core Data, so they're important. performBlockAndWait: is an easy way to introduce bugs).
Instead of performBlockAndWait: for your example above, create a method that takes a block to process the results of your fetch. The fetch, and the block, will run from the context's queue - the threading is done for you by Core Data:
- (void) doThingWithFetchResults:(void (^)(NSArray *results, NSError *error))resultsHandler{
if (resultsHandler != nil){
[[self context] performBlock:^{
NSArray *fetchResults = [[self context] executeFetchRequest:request error:&error];
resultsHandler(fetchResults, error);
}];
}
}
Which you would call like this:
[self doThingsWithFetchResults:^(NSArray *something, NSError *error){
if ([something count] > 0){
// Do stuff with your array of managed objects
} else {
// Handle the error
}
}];
That said, always prefer using an NSFetchedResultsController over using executeFetch:. There seems to be a belief that NSFetchedResultsController is for powering table views or that it can only be used from the main thread or queue. This is not true. A fetched results controller can be used with a private queue context as shown above, it does not require a main queue context. The delegate callbacks the fetched results controller emits will come from whatever queue it's context is using, so UIKit calls need to be made on the main queue inside your delegate method implementations. The one issue with using a fetched results controller this way is that caching does not work due to a bug.
Again, always prefer the higher level NSFetchedResultsController to executeFetch:.
When you save a context using queue confinement you are only saving that context, and the save will push the changes in that context to it's parent. To save to the store you must recursively save all the way. This is easy to do. Save the current context, then call save on the parent as well. Doing this recursively will save all the way to the store - the context that has no parent context.
Example:
- (void) saveContextAllTheWayBaby:(NSManagedObjectContext *)context {
[context performBlock:^{
NSError *error = nil;
if (![context save:&error]){
// Handle the error appropriately.
} else {
[self saveContextAllTheWayBaby:[context parentContext]];
}
}];
}
You do not, and should not, use merge notifications and mergeChangesFromContextDidSaveNotification: with queue confinement. mergeChangesFromContextDidSaveNotification: is a mechanism for the thread confinement model that is replaced by the parent-child context model. Using it can cause a whole slew of problems.
Following the examples above you should be able to abandon thread confinement and all of the issues that come with it. The problems you are seeing with your current implementation are only the tip of the iceberg.
There are a number of Core Data sessions from the past several years of WWDC that may also be of help. The 2012 WWDC Session "Core Data Best Practices" should be of particular interest.
if you want to use managed object context in background thread, there are two approaches,
1 Create a new context set concurrency type to NSPrivateQueueConcurrencyType and set the parentContext to main thread context
2 Create a new context set concurrency type to NSPrivateQueueConcurrencyType and set persistentStoreCoordinator to main thread persistentStoreCoordinator
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^(void) {
NSManagedObjectContext *privateContext = [[NSManagedObjectContext alloc] initWithConcurrencyType:NSPrivateQueueConcurrencyType];
privateContext.persistentStoreCoordinator = mainManagedObjectContext.persistentStoreCoordinator;
[[NSNotificationCenter defaultCenter] addObserverForName:NSManagedObjectContextDidSaveNotification object:nil queue:nil usingBlock:^(NSNotification* note) {
NSManagedObjectContext *moc = mainManagedObjectContext;
if (note.object != moc) {
[moc mergeChangesFromContextDidSaveNotification:note];
}
}];
// do work here
// remember managed object is not thread save, so you need to reload the object in private context
});
before exist the thread, make sure remove the observer, bad thing can happen if you don't
for more details read http://www.objc.io/issue-2/common-background-practices.html
My app simply add some users informations (name, birthdate, thumbnail, ...) with Core Data.
I noticed that if I delete a user right after created it, my app just stop working (not a crash, xCode returns no crash log, nothing).
I'm using asynchronous nested context for saving my users informations so I guess that behavior is due to the fact that my delete statement is executing before my save statement.
But since i'm a total beginner with Core Data, i don't really know how to handle that. I don't even know if i declared nested contexts the right way.
Here's my save codes :
NSManagedObjectContext *tmpContext = [[NSManagedObjectContext alloc] initWithConcurrencyType:NSPrivateQueueConcurrencyType];
tmpContext.parentContext = self.backgroundManagedObjectContext;
BSStudent *newStudent = (BSStudent *)[NSEntityDescription insertNewObjectForEntityForName:kBSStudent inManagedObjectContext:tmpContext];
newStudent.firstname = firstname;
newStudent.lastname = lastname;
newStudent.birthdate = birthdate;
newStudent.thumbnail = thumbnail;
newStudent.createdAt = [NSDate date];
[self dismissViewControllerAnimated:YES completion:nil];
[tmpContext performBlock:^{
[tmpContext save:nil];
[self.backgroundManagedObjectContext performBlock:^{
NSError *error;
if (![self.backgroundManagedObjectContext save:&error]) {
NSLog(#"%#", [error localizedDescription]);
}
[self.managedObjectContext performBlock:^{
NSError *error;
if (![self.managedObjectContext save:&error]) {
NSLog(#"%#", [error localizedDescription]);
}
}];
}];
}];
For precision, self.managedObjectContext is a NSPrivateQueueConcurrencyType and self.backgroundManagedObjectContext is a NSMainQueueConcurrencyType. And self.backgroundManagedObject is a child of self.managedObjectContext.
Here's my delete codes :
BSStudent *student = objc_getAssociatedObject(alertView, kDeleteStudentAlertAssociatedKey);
// on supprimer l'objet et on sauvegarde le contexte
[self.managedObjectContext deleteObject:student];
NSError *error;
if(![self.managedObjectContext save:&error]) {
NSLog(#"%#", [error localizedDescription]);
}
Can someone know how to handle this situation properly ?
Your delete is probably using the BSStudent created by a different context than you are deleting with. The following code will fix that.
NSManagedObjectContext * deleteContext = student.managedObjectContext;
[deleteContext deleteObject:student];
If you really want to use the other context, refetch the student using ObjectID
NSManagedObject * studentToDelete = [self.managedObjectContext objectWithID:student.objectID];
[self.managedObjectContext deleteObject:studentToDelete];
Nested contexts tips
Your contexts are probably okay, but I see a lot of people throwing around performBlock unnecessarily. With nested contexts, the QueueConcurrencyType refers to the thread it will do Core Data operations on, not the thread it was created on. So doing an operation like save on itself inside its performBlock is unnecessary and can lead to deadlocks.
When you save a child context, the parent is automatically synced with the changes. If you want to save upwards to the next higher parent automatically, I would recommend registering the parent for NSManagedObjectContextDidSaveNotification of the child saves. You can make this easier by having your AppDelegate have a factory method for creating the child contexts.
- (NSManagedObjectContext *)createChildContext
{
NSManagedObjectContext *tmpContext = [[NSManagedObjectContext alloc] initWithConcurrencyType:NSPrivateQueueConcurrencyType];
tmpContext.parentContext = self.managedObjectContext;
//Register for NSManagedObjectContextDidSaveNotification
return tmpContext;
}
if you wrap your delete in a performBlock call it can't execute at the same time as the saving performBlock.
e.g.:
BSStudent *student = objc_getAssociatedObject(alertView, kDeleteStudentAlertAssociatedKey);
// on supprimer l'objet et on sauvegarde le contexte
[self.managedObjectContext performBlock:^{
[self.managedObjectContext deleteObject:student];
NSError *error;
if(![self.managedObjectContext save:&error]) {
NSLog(#"%#", [error localizedDescription]);
}
}];
This is the "preferred" way of dealing with contexts as it serializes access to the context and keeps all those operations on the contexts thread,
I assume you are getting the crash because the objectID is becoming invalid or changing before the save completes, near the top of the call stack you'll see something about "hash64" or such
Since two days I'm trying to get Core Data to work with multiple threads. I tried standard thread confinement method with NSOperations, merging notifications, using objectWithId, dictionaries of contexts per thread and still I get strange deadlocks, inconsistency exceptions and a bunch of other nasty stuff. It's driving me crazy... moreover I can't find a single example or explanation on how to manage context in two threads when both threads may make changes to the shared persistent store...
I tried to use new iOS 5 method, that supposed to be easier, but still I get errors. The first problem is the deadlock when saving context. I removed all the unnecessary code and stil get deadlocks when executing this code fast enough (by quickly tapping a button):
NSManagedObjectContext *context = [StoreDataRetriever sharedRetriever].managedObjectContext;
for (int i = 0; i < 5; i++) {
NSError *error = nil;
NSLog(#"Main thread: %#, is main? %d", [NSThread currentThread], [NSThread isMainThread]);
BOOL saveOK = [context save:&error];
if (!saveOK) {
NSLog(#"ERROR!!! SAVING CONTEXT IN MAIN");
}
[context performBlock:^{
NSLog(#"Block thread: %#", [NSThread currentThread]);
NSError *error = nil;
BOOL savedOK = NO;
savedOK = [context save:&error];
if (!savedOK) {
NSLog(#"ERROR!!! SAVING CONTEXT IN BLOCK");
}
}];
}
There are no other changes to the database, nothing, only saving context. What is wrong with this code? How should it look like?
Note: [StoreDataRetriever sharedRetriever].managedObjectContext is created in appDelegate using initWithConcurrencyType:NSPrivateQueueConcurrencyType.
What's going on with that code? You are saving the context on a thread synchronously, then you schedule a save on the context private queue. 5 times. So basically, you may well have two save operations, one synchronous and one asynchronous, colliding with each other.
This is clearly an issue. You aren't supposed to save a context with a private queue outside of that queue. It will work with the current context implementation provided there is no scheduled block on the context queue. But this is wrong nevertheless.
…
for (int i = 0; i < 5; i++) {
NSLog(#"Main thread: %#, is main? %d", [NSThread currentThread], [NSThread isMainThread]);
__block NSError *error = nil;
__block BOOL saveOK = YES;
[context performBlockAndWait: ^{
saveOK = [context save: &error];
}];
if (!saveOK) {
NSLog(#"ERROR!!!");
}
…
With that code, you execute the save operation synchronously and most certainly on the same thread - thanks GCD - sparing context switches and synchronization stuff, and without any risk of having two operations running on that context at the same time.
The same rule applies when using NSMainQueueConcurrencyType, with an exception. That queue is bound to the main thread and the main thread only. You can schedule blocks on a context using the main queue from any thread with performBlock and performBlockAndWait like NSPrivateQueueConcurrencyType, and (the exception:) you can use the context directly on the main thread.
NSConfinementConcurrencyType binds the context to a specific thread and you cannot use GCD or blocks to deal with such a context, only the bound thread. There is very little reasons to use that concurrency model as of today. If you have to, use it, but if you do not absolutely have to, don't.
edit
Here is a very nice article about multi-contextes setups: http://www.cocoanetics.com/2012/07/multi-context-coredata/