Structure from motion from multiple views - opencv

I'm using OpenCV to extract 3D model from multiple views (images).
I got to a stage where the inputs are two images and the results are 3D points that reconstruct the 3D model.
I want to combine more than two images for a full reconstruction from all views.
So I have a 3D points described images 1-2 and a 3D points described images 2-3.
How can I merge the two 3D points arrays to a fully 3D model.
any suggestions?

It is not as simple as transforming the second pc to the frame where the first one is at, since the two frames are independent. There is a scale ambiguity. If you are lucky enough, you might see the merger works fine after some bundle adjustment.

Assuming you are doing the 3D reconstruction using a stereo matching algorithm, the 3D reconstruction between images 1-2 results in 3D points in the coordinate system of image 1. Similarly, the 3D reconstruction between images 2-3 results in 3D points in the coordinate system of image 2.
Hence you simply have to change the 3D coordinate system of your second point cloud, from the one of image 2 to the one of image 1. This makes use of the rotation matrix R and the translation vector T between images 1-2.
EDIT: Note that this way of merging the two point clouds is very basic, and you could improve accuracy by doing a joint 3D reconstruction using images 1-2-3 at once (e.g. bundle adjustment). I don't think that this approach is available in OpenCV though.

Related

How to determine distance of objects from camera using Epipolar Plane Image?

I am working on converting 2d images to 3d environment. The images were collected from a video made in a lateral motion. Then the images were placed one behind the other, so it would be easy to find the correspondences between the two images. This is called a spatial-temporal volume.
Next I take a slice from the spatiotemporal volume. That slice is called the Epipolar Plane Image.
Using the Epipolar Plane Image, I want to calculate the depth of the objects in the scene and make a 3D enviornment. I have listed the reference but I have not been able to figure out the math described in the paper. Can someone help me figure this out? Any help is appreciated.
Reference
Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion* !
The math in this situation is easy and straight forward.
First let's define two the coordinate systems for two overlapping images taken by the same camera with the focal length with the following schema:
Let us say that first camera position is defined as follows:
While it's orientation by using three Euler angles is:
By using this definition the corresponding rotation matrix is the identity matrix
The second camera position can be defined as follows:
And since the orientation is the same as the first camera, all Euler angles remain zero:
Which also means that the corresponding rotation matrix is the identity matrix.
If the images overlap and the orientation is the same, the situation in the image space looks like this:
Here the image coordinates and their measurement accuracy are defined as follows:
This geometrical situation can be described by using the Intercept Theorem:
As you see it's not complicated. But be aware that this solution is certainly not the best, since it's base assumption that all orientation angles are the same can't be fulfilled in reality.
If you need to be accurate then you have to perform an bundle adjustment. However, this equations are often used to determine the approximated solution for this geometric situation, where the values are used to linearize the collinearity equations.

Project a 2D point from one camera view onto the corresponding 2D point in another camera view of the same scene

I'm using open cv in C++ in multi-view scene with two cameras. I have the intrinsic and extrinsic parameters for both cameras.
I would like to map a (X,Y) point in View 1 to the same point in the second View. I'm am slightly unsure how I should use the intrinsic and extrinsic matrices in order to convert the points to a 3D world and finally end up with the new 2D point in view 2.
It is (normally) not possible to take a 2D coordinate in one image and map it into another 2D coordinate without some additional information.
The main problem is that a single point in the left image will map to a line in the right image (an epipolar line). There are an infinite number of possible corresponding locations because depth is a free parameter. Secondly it's entirely possible that the point doesn't exist in the right image i.e. it's occluded. Finally it may be difficult to determine exactly which point is the right correspondence, e.g. if there is no texture in the scene or if it contains lots of repeating features.
Although the fundamental matrix (which you get out of cv::StereoCalibrate anyway) gives you a constraint between points in each camera: x'Fx = 0, for a given x' there will be a whole family of x's which will satisfy the equation.
Some possible solutions are as follows:
You know the 3D location of a 2D point in one image. Provided that 3D point is in a common coordinate system, you just use cv::projectPoints with the calibration parameters of the other camera you want to project into.
You do some sparse feature detection and matching using something like SIFT or ORB. Then you can calculate a homography to map the points from one image to the other. This makes a few assumptions about things being planes. If you Google panorama homography, there are plenty of lecture slides detailing this.
You calibrate your cameras, perform an epipolar rectification (cv::StereoRectify, cv::initUndistortRectifyMap, cv::remap) and then run them through a stereo matcher. The output is a disparity map which gives you exactly what you want: a per-pixel mapping from one camera to the other. That is, left[y,x] = right[y, x+disparity_map[y,x]].
(1) is by far the easiest, but it's unlikely you have that information already. (2) is often doable and might be suitable, and as another commenter pointed out will be poor where the planarity assumption fails. (3) is the general (ideal) solution, but has its own drawbacks and relies on the images being amenable to dense matching.

How to track people across multiple cameras?

This is the setup: A fairly large room with 4 fish-eye cameras mounted on the ceiling. There are no blind spots. Each camera coverage overlaps a little with the other.
The idea is to track people across these cameras. As of now a blob extracting algorithm is in place, which detects people as blobs. It's a fairly decently working algorithm which detects individual people pretty good. Am using the OpenCV API for all of this.
What I mean by track people is that - Say, camera 1 identifies two people, say Person A and Person B. Now, as these two people move from the coverage of camera 1 into the overlapping area of coverage of cam1 and cam2 and into the area where only cam2 covers, cam2 should be able to identify them as the same people A and B cam1 identified them as.
This is what I thought I'd do -
1) The camera renders the image at 15fps and I think the dimensions of the frames are of 1920x1920.
2) Identify blobs individually in each camera and give each blob an unique label.
3) Now as for the overlaps - Compute an affine transformation matrix which maps pixels on one camera's frame onto another camera's frame - this needn't be done for every frame - this can be done before the whole process starts, as a pre-processing step. So in real time, whenever I detect a blob which is in the overlapping area, all I have to do is apply the transformation matrix to the pixels in cam1 and see if there is a corresponding blob in cam2 and give them the same label.
So, Questions :
1) Would this system give me a badly-working system which tracks people decently ?
2) So, for the affine transform, do I have to convert the fish-eye to rectilinear image ? (My answer is yes, but am not too sure)
Please feel free to point out possible errors and why certain things might not work in the process I've described. Also alternate suggestions are welcome! TIA
1- blob extraction is not enough to track a specific object, for people case I suggest HoG - or at least background subtraction before blob extraction, since all of the cameras have still scenes.
2- opencv <=2.4.9 uses pinhole model for stereo vision. so, before any calibration with opencv methods your fisheye images must be converted to rectilinear images first. You might try calibrating yourself using other approaches too
release 3.0.0 will have support for fisheye model. It is on alpha stage, you can still download and give it a try.

Correspondence between a set of 3D model points and their image projections

I have a set of 3-d points and some images with the projections of these points. I also have the focal length of the camera and the principal point of the images with the projections (resulting from previously done camera calibration).
Is there any way to, given these parameters, find the automatic correspondence between the 3-d points and the image projections? I've looked through some OpenCV documentation but I didn't find anything suitable until now. I'm looking for a method that does the automatic labelling of the projections and thus the correspondence between them and the 3-d points.
The question is not very clear, but I think you mean to say that you have the intrinsic calibration of the camera, but not its location and attitude with respect to the scene (the "extrinsic" part of the calibration).
This problem does not have a unique solution for a general 3d point cloud if all you have is one image: just notice that the image does not change if you move the 3d points anywhere along the rays projecting them into the camera.
If have one or more images, you know everything about the 3D cloud of points (e.g. the points belong to an object of known shape and size, and are at known locations upon it), and you have matched them to their images, then it is a standard "camera resectioning" problem: you just solve for the camera extrinsic parameters that make the 3D points project onto their images.
If you have multiple images and you know that the scene is static while the camera is moving, and you can match "enough" 3d points to their images in each camera position, you can solve for the camera poses up to scale. You may want to start from David Nister's and/or Henrik Stewenius's papers on solvers for calibrated cameras, and then look into "bundle adjustment".
If you really want to learn about this (vast) subject, Zisserman and Hartley's book is as good as any. For code, look into libmv, vxl, and the ceres bundle adjuster.

3D reconstruction -- How to create 3D model from 2D image?

If I take a picture with a camera, so I know the distance from the camera to the object, such as a scale model of a house, I would like to turn this into a 3D model that I can maneuver around so I can comment on different parts of the house.
If I sit down and think about taking more than one picture, labeling direction, and distance, I should be able to figure out how to do this, but, I thought I would ask if someone has some paper that may help explain more.
What language you explain in doesn't matter, as I am looking for the best approach.
Right now I am considering showing the house, then the user can put in some assistance for height, such as distance from the camera to the top of that part of the model, and given enough of this it would be possible to start calculating heights for the rest, especially if there is a top-down image, then pictures from angles on the four sides, to calculate relative heights.
Then I expect that parts will also need to differ in color to help separate out the various parts of the model.
As mentioned, the problem is very hard and is often also referred to as multi-view object reconstruction. It is usually approached by solving the stereo-view reconstruction problem for each pair of consecutive images.
Performing stereo reconstruction requires that pairs of images are taken that have a good amount of visible overlap of physical points. You need to find corresponding points such that you can then use triangulation to find the 3D co-ordinates of the points.
Epipolar geometry
Stereo reconstruction is usually done by first calibrating your camera setup so you can rectify your images using the theory of epipolar geometry. This simplifies finding corresponding points as well as the final triangulation calculations.
If you have:
the intrinsic camera parameters (requiring camera calibration),
the camera's position and rotation (it's extrinsic parameters), and
8 or more physical points with matching known positions in two photos (when using the eight-point algorithm)
you can calculate the fundamental and essential matrices using only matrix theory and use these to rectify your images. This requires some theory about co-ordinate projections with homogeneous co-ordinates and also knowledge of the pinhole camera model and camera matrix.
If you want a method that doesn't need the camera parameters and works for unknown camera set-ups you should probably look into methods for uncalibrated stereo reconstruction.
Correspondence problem
Finding corresponding points is the tricky part that requires you to look for points of the same brightness or colour, or to use texture patterns or some other features to identify the same points in pairs of images. Techniques for this either work locally by looking for a best match in a small region around each point, or globally by considering the image as a whole.
If you already have the fundamental matrix, it will allow you to rectify the images such that corresponding points in two images will be constrained to a line (in theory). This helps you to use faster local techniques.
There is currently still no ideal technique to solve the correspondence problem, but possible approaches could fall in these categories:
Manual selection: have a person hand-select matching points.
Custom markers: place markers or use specific patterns/colours that you can easily identify.
Sum of squared differences: take a region around a point and find the closest whole matching region in the other image.
Graph cuts: a global optimisation technique based on optimisation using graph theory.
For specific implementations you can use Google Scholar to search through the current literature. Here is one highly cited paper comparing various techniques:
A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms.
Multi-view reconstruction
Once you have the corresponding points, you can then use epipolar geometry theory for the triangulation calculations to find the 3D co-ordinates of the points.
This whole stereo reconstruction would then be repeated for each pair of consecutive images (implying that you need an order to the images or at least knowledge of which images have many overlapping points). For each pair you would calculate a different fundamental matrix.
Of course, due to noise or inaccuracies at each of these steps you might want to consider how to solve the problem in a more global manner. For instance, if you have a series of images that are taken around an object and form a loop, this provides extra constraints that can be used to improve the accuracy of earlier steps using something like bundle adjustment.
As you can see, both stereo and multi-view reconstruction are far from solved problems and are still actively researched. The less you want to do in an automated manner the more well-defined the problem becomes, but even in these cases quite a bit of theory is required to get started.
Alternatives
If it's within the constraints of what you want to do, I would recommend considering dedicated hardware sensors (such as the XBox's Kinect) instead of only using normal cameras. These sensors use structured light, time-of-flight or some other range imaging technique to generate a depth image which they can also combine with colour data from their own cameras. They practically solve the single-view reconstruction problem for you and often include libraries and tools for stitching/combining multiple views.
Epipolar geometry references
My knowledge is actually quite thin on most of the theory, so the best I can do is to further provide you with some references that are hopefully useful (in order of relevance):
I found a PDF chapter on Multiple View Geometry that contains most of the critical theory. In fact the textbook Multiple View Geometry in Computer Vision should also be quite useful (sample chapters available here).
Here's a page describing a project on uncalibrated stereo reconstruction that seems to include some source code that could be useful. They find matching points in an automated manner using one of many feature detection techniques. If you want this part of the process to be automated as well, then SIFT feature detection is commonly considered to be an excellent non-real-time technique (since it's quite slow).
A paper about Scene Reconstruction from Multiple Uncalibrated Views.
A slideshow on Methods for 3D Reconstruction from Multiple Images (it has some more references below it's slides towards the end).
A paper comparing different multi-view stereo reconstruction algorithms can be found here. It limits itself to algorithms that "reconstruct dense object models from calibrated views".
Here's a paper that goes into lots of detail for the case that you have stereo cameras that take multiple images: Towards robust metric reconstruction
via a dynamic uncalibrated stereo head. They then find methods to self-calibrate the cameras.
I'm not sure how helpful all of this is, but hopefully it includes enough useful terminology and references to find further resources.
Research has made significant progress and these days it is possible to obtain pretty good-looking 3D shapes from 2D images. For instance, in our recent research work titled "Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes With Deep Generative Networks" took a big step in solving the problem of obtaining 3D shapes from 2D images. In our work, we show that you can not only go from 2D to 3D directly and get a good, approximate 3D reconstruction but you can also learn a distribution of 3D shapes in an efficient manner and generate/synthesize 3D shapes. Below is an image of our work showing that we are able to do 3D reconstruction even from a single silhouette or depth map (on the left). The ground-truth 3D shapes are shown on the right.
The approach we took has some contributions related to cognitive science or the way the brain works: the model we built shares parameters for all shape categories instead of being specific to only one category. Also, it obtains consistent representations and takes the uncertainty of the input view into account when producing a 3D shape as output. Therefore, it is able to naturally give meaningful results even for very ambiguous inputs. If you look at the citation to our paper you can see even more progress just in terms of going from 2D images to 3D shapes.
This problem is known as Photogrammetry.
Google will supply you with endless references, just be aware that if you want to roll your own, it's a very hard problem.
Check out The Deadalus Project, althought that website does not contain a gallery with illustrative information about the solution, it post several papers and info about the working method.
I watched a lecture from one of the main researchers of the project (Roger Hubbold), and the image results are quite amazing! Althought is a complex and long problem. It has a lot of tricky details to take into account to get an approximation of the 3d data, take for example the 3d information from wall surfaces, for which the heuristic to work is as follows: Take a photo with normal illumination of the scene, and then retake the picture in same position with full flash active, then substract both images and divide the result by a pre-taken flash calibration image, apply a box filter to this new result and then post-process to estimate depth values, the whole process is explained in detail in this paper (which is also posted/referenced in the project website)
Google Sketchup (free) has a photo matching tool that allows you to take a photograph and match its perspective for easy modeling.
EDIT: It appears that you're interested in developing your own solution. I thought you were trying to obtain a 3D model of an image in a single instance. If this answer isn't helpful, I apologize.
Hope this helps if you are trying to construct 3d volume from 2d stack of images !! You can use open source tool such as ImageJ Fiji which comes with 3d viewer plugin..
https://quppler.com/creating-a-classifier-using-image-j-fiji-for-3d-volume-data-preparation-from-stack-of-images/

Resources