Kdb/Q Group By Minimum gives infinity - minimum

Kdb calculates infinity for null column if group by is performed.
t:([]a: 1 1 2;b: 3 2 0n)
select min b by a from t
a
1 2.0
2 ow
ow is infinity.
Is there any way I can get null(0n) for 2

From Jeff Borror's q for mortals:
q)min 0N 5 0N 1 3 / nulls are ignored
1
q)min 0N 0N / infinity if all null
0W
http://code.kx.com/q/ref/stats-aggregates/#min-minimum

That's the expected result; you need to update afterwards:
update b:?[0w=b;0N;b] from select min b by a from t

You should be careful when operating with nulls. Note the following
as additional info:
q)max 0N 0N
-0W
q)min 0N 0N
0W
q)0N+2
0N
q)sum 0N 2
2
q)sum 0N 0N
0

Related

Lua more than one locals in one line

Assuming we have the following code:
local x = 1
local x, y = 2, 3
I know x will become 2 after the second line, however, does the local on the that line create a new x, or use the one before?
They will be two different local values: the first one will be shadowed and not accessible as the second one is created with the same name in the same block. Here is the information that luac -l -l (Lua 5.3) shows for this script:
main <local.lua:0,0> (4 instructions at 00697ae8)
0+ params, 3 slots, 1 upvalue, 3 locals, 3 constants, 0 functions
1 [1] LOADK 0 -1 ; 1
2 [2] LOADK 1 -2 ; 2
3 [2] LOADK 2 -3 ; 3
4 [2] RETURN 0 1
constants (3) for 00697ae8:
1 1
2 2
3 3
locals (3) for 00697ae8:
0 x 2 5
1 x 4 5
2 y 4 5
upvalues (1) for 00697ae8:
0 _ENV 1 0
The locals section shows three variables with two x that have the same end-of-scope location.

Octave Conditional Merging of matrices

I have searched for an Octave function that facilitates conditional merging of matrices but haven't one so far. My goal is to do this using vectors without looping. Here is an example of what I am trying to do.
A= [1 1
2 2
3 1
5 2];
B= [1 9
2 10];
I would like to get C as
C= [1 1 9
2 2 10
3 1 9
5 2 10];
Is there a function that takes A, B and the list of column(s) to join on and then produce C?
You can use the second output of ismember to find the occurrences of the second column of A in the first column of B and then use that to grab specific entries from the second column of B to construct C.
[~, inds] = ismember(A(:,2), B(:,1));
C = [A, B(inds,2)];
%// 1 1 9
%// 2 2 10
%// 3 1 9
%// 5 2 10

Sum data in column with criteria in row

I wish to make a formula to sum up the value with 2 criteria, example show as below:-
A B C D E
1 1-Apr 2-Apr 3-Apr 4-Apr
2 aa 1 4 7 10
3 bb 2 5 8 11
4 cc 3 6 9 12
5
6 Criteria 1 bb
7 Range start 2-Apr-16
8 Range End 4-Apr-16
9 Total sum #VALUE!
tried formula
1 SUMIF(A2:A4,C6,INDEX(B2:E4,0,MATCH(C7,B1:E1,0)))
* Only return 1 cell value
2 SUMIF(A2:A4,C6,INDEX(B2:E4,0,MATCH(">="&C7,B1:E1,0)))
* Showed N/A error
3 SUMIFS(B2:E4,A2:A4,C6,B1:E1,">="&C7,B1:E1,"<="&C8)
* Showed #Value error
Hereby I attached a link of picture for better understanding :
Can anyone help me on the formula?
I figured out the solution with step evaluation:
=SUMIF(B1:F1,">="&C7,INDEX(B2:F4,MATCH(C6,A2:A4,0),0)) -
SUMIF(B1:F1,">"&C8,INDEX(B2:F4,MATCH(C6,A2:A4,0),0))

Does the Lua compiler optimize local vars?

Is the current Lua compiler smart enough to optimize away local variables that are used for clarity?
local top = x - y
local bottom = x + y
someCall(top, bottom)
Or does inlining things by hand run faster?
someCall(x - y, x + y)
Since Lua often compiles source code into byte code on the fly, it is designed to be a fast single-pass compiler. It does do some constant folding, but other than that there are not many optimizations. You can usually check what the compiler does by executing luac -l -l -p file.lua and looking at the generated (disassembled) byte code.
In your case the Lua code
function a( x, y )
local top = x - y
local bottom = x + y
someCall(top, bottom)
end
function b( x, y )
someCall(x - y, x + y)
end
results int the following byte code listing when run through luac5.3 -l -l -p file.lua (some irrelevant parts skipped):
function <file.lua:1,5> (7 instructions at 0xcd7d30)
2 params, 7 slots, 1 upvalue, 4 locals, 1 constant, 0 functions
1 [2] SUB 2 0 1
2 [3] ADD 3 0 1
3 [4] GETTABUP 4 0 -1 ; _ENV "someCall"
4 [4] MOVE 5 2
5 [4] MOVE 6 3
6 [4] CALL 4 3 1
7 [5] RETURN 0 1
constants (1) for 0xcd7d30:
1 "someCall"
locals (4) for 0xcd7d30:
0 x 1 8
1 y 1 8
2 top 2 8
3 bottom 3 8
upvalues (1) for 0xcd7d30:
0 _ENV 0 0
function <file.lua:7,9> (5 instructions at 0xcd7f10)
2 params, 5 slots, 1 upvalue, 2 locals, 1 constant, 0 functions
1 [8] GETTABUP 2 0 -1 ; _ENV "someCall"
2 [8] SUB 3 0 1
3 [8] ADD 4 0 1
4 [8] CALL 2 3 1
5 [9] RETURN 0 1
constants (1) for 0xcd7f10:
1 "someCall"
locals (2) for 0xcd7f10:
0 x 1 6
1 y 1 6
upvalues (1) for 0xcd7f10:
0 _ENV 0 0
As you can see, the first variant (the a function) has two additional MOVE instructions, and two additional locals.
If you are interested in the details of the opcodes, you can check the comments for the OpCode enum in lopcodes.h.
E.g. the opcode format for OP_ADD is:
OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
So the 2 [3] ADD 3 0 1 from above takes the values from registers 0 and 1 (the locals x and y in this case), adds them together, and stores the result in register 3. It is the second opcode in this function and the corresponding source code is on line 3.

Quick way to determine the number of k-length paths from A to B in a dense complete graph

Given a complete dense graph (over 250.000 nodes) , what is the quickest way to determine the number of k-length paths from node A to B ?
I understand this is an old post, but I had the exact same question and could not find the answer.
I like to think of this problem as a "permutation without repetition", as the order of the nodes visited matters (permutation) and we aren't backtracking (no repetitions). The number of permutations without repetition is: n!/(n-r)!
For a complete graph with N nodes, there are N - 2 remaining nodes to choose from when creating a path between a given A and B. To create a path of length K, K-1 nodes must be chosen from the remaining nodes after A and B are excluded. Therefore, in this context, n = N - 2, and r = k - 1.
Plugging into the above formula yields:
(N-2)!/(N-K-1)!
Example: for N = 5, with nodes 0,1,2,3,4 the following paths are possible from 0 to 1:
0 1
0 2 1
0 2 3 1
0 2 3 4 1
0 2 4 1
0 2 4 3 1
0 3 1
0 3 2 1
0 3 2 4 1
0 3 4 1
0 3 4 2 1
0 4 1
0 4 2 1
0 4 2 3 1
0 4 3 1
0 4 3 2 1
This yields 1 path of length 1, 3 paths of length 2, 6 paths of length 3, and 6 paths of length 4.
This appears to work for any N>=2 and K<=N-1.
You can use basically dynamic programming: For each node Y and path length k, you can compute the number of paths from A to Y of length k if you know the number of paths from A to X of path length k-1 for all nodes X. Total complexity is O(KV), where K is the total path length you are trying to compute for and V is the number of vertices.

Resources