reducing jitter of serial ntp refclock - ntpd

I am currently trying to connect my DIY DC77 clock to ntpd (using Ubuntu). I followed the instructions here: http://wiki.ubuntuusers.de/Systemzeit.
With ntpq I can see the DCF77 clock
~$ ntpq -c peers
remote refid st t when poll reach delay offset jitter
==============================================================================
+dispatch.mxjs.d 192.53.103.104 2 u 6 64 377 13.380 12.608 4.663
+main.macht.org 192.53.103.108 2 u 12 64 377 33.167 5.008 4.769
+alvo.fungus.at 91.195.238.4 3 u 15 64 377 16.949 7.454 28.075
-ns1.blazing.de 213.172.96.14 2 u - 64 377 10.072 14.170 2.335
*GENERIC(0) .DCFa. 0 l 31 64 377 0.000 5.362 4.621
LOCAL(0) .LOCL. 12 l 927 64 0 0.000 0.000 0.000
So far this looks OK. However I have two questions.
What exactly is the sign of the offset? Is .DCFa. ahead of the system clock or behind the system clock?
.DCFa. points to refclock-0 which is a DIY DCF77 clock emulating a Meinberg clock. It is connected to my Ubuntu Linux box with an FTDI usb-serial adapter running at 9600 7e2. I verified with a DSO that it emits the time with jitter significantly below 1ms. So I assume the jitter is introduced by either the FTDI adapter or the kernel. How would I find out and how can I reduce it?

Part One:
Positive offsets indicate time in the client is behind time on the server.
Negative offsets indicate that time in the client is ahead of time on the server.
I always remember this as "what needs to happen to my clock?"
+0.123 = Add 0.123 to me
-0.123 = Subtract 0.123 from me
Part Two:
Yes the USB serial converters add jitter. Get a real serial port:) You can also use setserial and tell it that the serial port needs to be low_latency. Just apt-get setserial.
Bonus Points:
Lose the unreferenced local clock entry. NO LOCL!!!!

Related

Ceph cluster down, Reason OSD Full - not starting up

Cephadm Pacific v16.2.7
Our Ceph cluster is stuck pgs degraded and osd are down
Reason:- OSD's got filled up
Things we tried
Changed vale to to maximum possible combination (not sure if done right ?)
backfillfull < nearfull, nearfull < full, and full < failsafe_full
ceph-objectstore-tool - tried to delte some pgs to recover space
tried to mount osd and delete pg's to recover some space, but not sure how to do it in bluestore .
Global Recovery Event - stuck for ever
ceph -s
cluster:
id: a089a4b8-2691-11ec-849f-07cde9cd0b53
health: HEALTH_WARN
6 failed cephadm daemon(s)
1 hosts fail cephadm check
Reduced data availability: 362 pgs inactive, 6 pgs down, 287 pgs peering, 48 pgs stale
Degraded data redundancy: 5756984/22174447 objects degraded (25.962%), 91 pgs degraded, 84 pgs undersized
13 daemons have recently crashed
3 slow ops, oldest one blocked for 31 sec, daemons [mon.raspi4-8g-18,mon.raspi4-8g-20] have slow ops.
services:
mon: 5 daemons, quorum raspi4-8g-20,raspi4-8g-25,raspi4-8g-18,raspi4-8g-10,raspi4-4g-23 (age 2s)
mgr: raspi4-8g-18.slyftn(active, since 3h), standbys: raspi4-8g-12.xuuxmp, raspi4-8g-10.udbcyy
osd: 19 osds: 15 up (since 2h), 15 in (since 2h); 6 remapped pgs
data:
pools: 40 pools, 636 pgs
objects: 4.28M objects, 4.9 TiB
usage: 6.1 TiB used, 45 TiB / 51 TiB avail
pgs: 56.918% pgs not active
5756984/22174447 objects degraded (25.962%)
2914/22174447 objects misplaced (0.013%)
253 peering
218 active+clean
57 undersized+degraded+peered
25 stale+peering
20 stale+active+clean
19 active+recovery_wait+undersized+degraded+remapped
10 active+recovery_wait+degraded
7 remapped+peering
7 activating
6 down
2 active+undersized+remapped
2 stale+remapped+peering
2 undersized+remapped+peered
2 activating+degraded
1 active+remapped+backfill_wait
1 active+recovering+undersized+degraded+remapped
1 undersized+peered
1 active+clean+scrubbing+deep
1 active+undersized+degraded+remapped+backfill_wait
1 stale+active+recovery_wait+undersized+degraded+remapped
progress:
Global Recovery Event (2h)
[==========..................] (remaining: 4h)
'''
Some versions of BlueStore were susceptible to BlueFS log growing extremely large - beyond the point of making booting OSD impossible. This state is indicated by booting that takes very long and fails in _replay function.
This can be fixed by::
ceph-bluestore-tool fsck –path osd path –bluefs_replay_recovery=true
It is advised to first check if rescue process would be successful::
ceph-bluestore-tool fsck –path osd path –bluefs_replay_recovery=true –bluefs_replay_recovery_disable_compact=true
If above fsck is successful fix procedure can be applied
Special Thank you to, this has been solved with the help of a dewDrive Cloud backup faculty Member

"no next heap size found: 18446744071789822643, offset 0"

I've written a simulator, which is distributed over two hosts. When I launch a few thousand processes, after about 10 minutes and half a million events written, my main Erlang (OTP v22) virtual machine crashes with this message:
no next heap size found: 18446744071789822643, offset 0.
It's always that same number - 18446744071789822643.
Because my server is very capable, the crash dump is also huge and I can't view it on my headless server (no WX installed).
Are there any tips on what I can look at?
What would be the first things I can try out to debug this issue?
First, see what memory() says:
> memory().
[{total,18480016},
{processes,4615512},
{processes_used,4614480},
{system,13864504},
{atom,331273},
{atom_used,306525},
{binary,47632},
{code,5625561},
{ets,438056}]
Check which one is growing - processes, binary, ets?
If it's processes, try typing i(). in the Erlang shell while the processes are running. You'll see something like:
Pid Initial Call Heap Reds Msgs
Registered Current Function Stack
<0.0.0> otp_ring0:start/2 233 1263 0
init init:loop/1 2
<0.1.0> erts_code_purger:start/0 233 44 0
erts_code_purger erts_code_purger:wait_for_request 0
<0.2.0> erts_literal_area_collector:start 233 9 0
erts_literal_area_collector:msg_l 5
<0.3.0> erts_dirty_process_signal_handler 233 128 0
erts_dirty_process_signal_handler 2
<0.4.0> erts_dirty_process_signal_handler 233 9 0
erts_dirty_process_signal_handler 2
<0.5.0> erts_dirty_process_signal_handler 233 9 0
erts_dirty_process_signal_handler 2
<0.8.0> erlang:apply/2 6772 238183 0
erl_prim_loader erl_prim_loader:loop/3 5
Look for a process with a very big heap, and that's where you'd start looking for a memory leak.
(If you weren't running headless, I'd suggest starting Observer with observer:start(), and look at what's happening in the Erlang node.)

How to debug leak in native memory on JVM?

We have a java application running on Mule. We have the XMX value configured for 6144M, but are routinely seeing the overall memory usage climb and climb. It was getting close to 20 GB the other day before we proactively restarted it.
Thu Jun 30 03:05:57 CDT 2016
top - 03:05:58 up 149 days, 6:19, 0 users, load average: 0.04, 0.04, 0.00
Tasks: 164 total, 1 running, 163 sleeping, 0 stopped, 0 zombie
Cpu(s): 4.2%us, 1.7%sy, 0.0%ni, 93.9%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 24600552k total, 21654876k used, 2945676k free, 440828k buffers
Swap: 2097144k total, 84256k used, 2012888k free, 1047316k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3840 myuser 20 0 23.9g 18g 53m S 0.0 79.9 375:30.02 java
The jps command shows:
10671 Jps
3840 MuleContainerBootstrap
The jstat command shows:
S0C S1C S0U S1U EC EU OC OU PC PU YGC YGCT FGC FGCT GCT
37376.0 36864.0 16160.0 0.0 2022912.0 1941418.4 4194304.0 445432.2 78336.0 66776.7 232 7.044 17 17.403 24.447
The startup arguments are (sensitive bits have been changed):
3840 MuleContainerBootstrap -Dmule.home=/mule -Dmule.base=/mule -Djava.net.preferIPv4Stack=TRUE -XX:MaxPermSize=256m -Djava.endorsed.dirs=/mule/lib/endorsed -XX:+HeapDumpOnOutOfMemoryError -Dmyapp.lib.path=/datalake/app/ext_lib/ -DTARGET_ENV=prod -Djava.library.path=/opt/mapr/lib -DksPass=mypass -DsecretKey=aeskey -DencryptMode=AES -Dkeystore=/mule/myStore -DkeystoreInstance=JCEKS -Djava.security.auth.login.config=/opt/mapr/conf/mapr.login.conf -Dmule.mmc.bind.port=1521 -Xms6144m -Xmx6144m -Djava.library.path=%LD_LIBRARY_PATH%:/mule/lib/boot -Dwrapper.key=a_guid -Dwrapper.port=32000 -Dwrapper.jvm.port.min=31000 -Dwrapper.jvm.port.max=31999 -Dwrapper.disable_console_input=TRUE -Dwrapper.pid=10744 -Dwrapper.version=3.5.19-st -Dwrapper.native_library=wrapper -Dwrapper.arch=x86 -Dwrapper.service=TRUE -Dwrapper.cpu.timeout=10 -Dwrapper.jvmid=1 -Dwrapper.lang.domain=wrapper -Dwrapper.lang.folder=../lang
Adding up the "capacity" items from jps shows that only my 6144m is being used for java heap. Where the heck is the rest of the memory being used? Stack memory? Native heap? I'm not even sure how to proceed.
If left to continue growing, it will consume all memory on the system and we will eventually see the system freeze up throwing swap space errors.
I have another process that is starting to grow. Currently at about 11g resident memory.
pmap 10746 > pmap_10746.txt
cat pmap_10746.txt | grep anon | cut -c18-25 | sort -h | uniq -c | sort -rn | less
Top 10 entries by count:
119 12K
112 1016K
56 4K
38 131072K
20 65532K
15 131068K
14 65536K
10 132K
8 65404K
7 128K
Top 10 entries by allocation size:
1 6291456K
1 205816K
1 155648K
38 131072K
15 131068K
1 108772K
1 71680K
14 65536K
20 65532K
1 65512K
And top 10 by total size:
Count Size Aggregate
1 6291456K 6291456K
38 131072K 4980736K
15 131068K 1966020K
20 65532K 1310640K
14 65536K 917504K
8 65404K 523232K
1 205816K 205816K
1 155648K 155648K
112 1016K 113792K
This seems to be telling me that because the Xmx and Xms are set to the same value, there is a single allocation of 6291456K for the java heap. Other allocations are NOT java heap memory. What are they? They are getting allocated in rather large chunks.
Expanding a bit more details on Peter's answer.
You can take a binary heap dump from within VisualVM (right click on the process in the left-hand side list, and then on heap dump - it'll appear right below shortly after). If you can't attach VisualVM to your JVM, you can also generate the dump with this:
jmap -dump:format=b,file=heap.hprof $PID
Then copy the file and open it with Visual VM (File, Load, select type heap dump, find the file.)
As Peter notes, a likely cause for the leak may be non collected DirectByteBuffers (e.g.: some instance of another class is not properly de-referencing buffers, so they are never GC'd).
To identify where are these references coming from, you can use Visual VM to examine the heap and find all instances of DirectByteByffer in the "Classes" tab. Find the DBB class, right click, go to instances view.
This will give you a list of instances. You can click on one and see who's keeping a reference each one:
Note the bottom pane, we have "referent" of type Cleaner and 2 "mybuffer". These would be properties in other classes that are referencing the instance of DirectByteBuffer we drilled into (it should be ok if you ignore the Cleaner and focus on the others).
From this point on you need to proceed based on your application.
Another equivalent way to get the list of DBB instances is from the OQL tab. This query:
select x from java.nio.DirectByteBuffer x
Gives us the same list as before. The benefit of using OQL is that you can execute more more complex queries. For example, this gets all the instances that are keeping a reference to a DirectByteBuffer:
select referrers(x) from java.nio.DirectByteBuffer x
What you can do is take a heap dump and look for object which are storing data off heap such as ByteBuffers. Those objects will appear small but are a proxy for larger off heap memory areas. See if you can determine why lots of those might be retained.

How to reduce Ipython parallel memory usage

I'm using Ipython parallel in an optimisation algorithm that loops a large number of times. Parallelism is invoked in the loop using the map method of a LoadBalancedView (twice), a DirectView's dictionary interface and an invocation of a %px magic. I'm running the algorithm in an Ipython notebook.
I find that the memory consumed by both the kernel running the algorithm and one of the controllers increases steadily over time, limiting the number of loops I can execute (since available memory is limited).
Using heapy, I profiled memory use after a run of about 38 thousand loops:
Partition of a set of 98385344 objects. Total size = 18016840352 bytes.
Index Count % Size % Cumulative % Kind (class / dict of class)
0 5059553 5 9269101096 51 9269101096 51 IPython.parallel.client.client.Metadata
1 19795077 20 2915510312 16 12184611408 68 list
2 24030949 24 1641114880 9 13825726288 77 str
3 5062764 5 1424092704 8 15249818992 85 dict (no owner)
4 20238219 21 971434512 5 16221253504 90 datetime.datetime
5 401177 0 426782056 2 16648035560 92 scipy.optimize.optimize.OptimizeResult
6 3 0 402654816 2 17050690376 95 collections.defaultdict
7 4359721 4 323814160 2 17374504536 96 tuple
8 8166865 8 196004760 1 17570509296 98 numpy.float64
9 5488027 6 131712648 1 17702221944 98 int
<1582 more rows. Type e.g. '_.more' to view.>
You can see that about half the memory is used by IPython.parallel.client.client.Metadata instances. A good indicator that results from the map invocations are being cached is the 401177 OptimizeResult instances, the same number as the number of optimize invocations via lbview.map - I am not caching them in my code.
Is there a way I can control this memory usage on both the kernel and the Ipython parallel controller (who'se memory consumption is comparable to the kernel)?
Ipython parallel clients and controllers store past results and other metadata from past transactions.
The IPython.parallel.Client class provides a method for clearing this data:
Client.purge_everything()
documented here. There is also purge_results() and purge_local_results() methods that give you some control over what gets purged.

Test Plan with ApacheBench(AB) testing tool

I am trying load testing here. My backend is in Ruby(2.2) on Rails(3).
I read many pages about how to work with Ab testing.
Here is what I have tried:
ab -n 100 -c 30 url
Result:
This is ApacheBench, Version 2.3 <$Revision: 1554214 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking 52.74.130.35 (be patient).....done
Server Software: nginx/1.6.2
Server Hostname: 52.74.130.35
Server Port: 80
Document Path: url
Document Length: 1372 bytes
Concurrency Level: 3
Time taken for tests: 10.032 seconds
Complete requests: 100
Failed requests: 0
Total transferred: 181600 bytes
HTML transferred: 137200 bytes
Requests per second: 9.97 [#/sec] (mean)
Time per request: 300.963 [ms] (mean)
Time per request: 100.321 [ms] (mean, across all concurrent requests)
Transfer rate: 17.68 [Kbytes/sec] received
Connection Times (ms)
min mean[+/-sd] median max
Connect: 2 9 25.0 5 227
Processing: 176 289 136.5 257 1134
Waiting: 175 275 77.9 256 600
Total: 180 298 139.2 264 1143
Percentage of the requests served within a certain time (ms)
50% 264
66% 285
75% 293
80% 312
90% 361
95% 587
98% 1043
99% 1143
Which seams to be working perfectly. But my problem is I want to test many API's, not just one. So I have to write a script in which I write all the Api's with particular probabilities(weights) and load test on them.
I know how its possible with Locust, but locust does not support nested json to be passed as parameters.
Can somebody help with this.
Also let me know if there is any problem/ambiguity in the question itself.

Resources