I know that a Gaussian Process model is best suited for regression rather than classification. However, I would still like to apply a Gaussian Process to a classification task but I am not sure what is the best way to bin the predictions generated by the model. I have reviewed the Gaussian Process classification example that is available on the scikit-learn website at:
http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gp_probabilistic_classification_after_regression.html
But I found this example confusing (I have listed the things I found confusing about this example at the end of the question). To try and get a better understanding I have created a very basic python code example using scikit-learn that generates classifications by applying a decision boundary to the predictions made by a gaussian process:
#A minimum example illustrating how to use a
#Gaussian Processes for binary classification
import numpy as np
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.gaussian_process import GaussianProcess
if __name__ == "__main__":
#defines some basic training and test data
#If the descriptive features have large values
#(i.e., 8s and 9s) the target is 1
#If the descriptive features have small values
#(i.e., 2s and 3s) the target is 0
TRAININPUTS = np.array([[8, 9, 9, 9, 9],
[9, 8, 9, 9, 9],
[9, 9, 8, 9, 9],
[9, 9, 9, 8, 9],
[9, 9, 9, 9, 8],
[2, 3, 3, 3, 3],
[3, 2, 3, 3, 3],
[3, 3, 2, 3, 3],
[3, 3, 3, 2, 3],
[3, 3, 3, 3, 2]])
TRAINTARGETS = np.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
TESTINPUTS = np.array([[8, 8, 9, 9, 9],
[9, 9, 8, 8, 9],
[3, 3, 3, 3, 3],
[3, 2, 3, 2, 3],
[3, 2, 2, 3, 2],
[2, 2, 2, 2, 2]])
TESTTARGETS = np.array([1, 1, 0, 0, 0, 0])
DECISIONBOUNDARY = 0.5
#Fit a gaussian process model to the data
gp = GaussianProcess(theta0=10e-1, random_start=100)
gp.fit(TRAININPUTS, TRAINTARGETS)
#Generate a set of predictions for the test data
y_pred = gp.predict(TESTINPUTS)
print "Predicted Values:"
print y_pred
print "----------------"
#Convert the continuous predictions into the classes
#by splitting on a decision boundary of 0.5
predictions = []
for y in y_pred:
if y > DECISIONBOUNDARY:
predictions.append(1)
else:
predictions.append(0)
print "Binned Predictions (decision boundary = 0.5):"
print predictions
print "----------------"
#print out the confusion matrix specifiy 1 as the positive class
cm = confusion_matrix(TESTTARGETS, predictions, [1, 0])
print "Confusion Matrix (1 as positive class):"
print cm
print "----------------"
print "Classification Report:"
print metrics.classification_report(TESTTARGETS, predictions)
When I run this code I get the following output:
Predicted Values:
[ 0.96914832 0.96914832 -0.03172673 0.03085167 0.06066993 0.11677634]
----------------
Binned Predictions (decision boundary = 0.5):
[1, 1, 0, 0, 0, 0]
----------------
Confusion Matrix (1 as positive class):
[[2 0]
[0 4]]
----------------
Classification Report:
precision recall f1-score support
0 1.00 1.00 1.00 4
1 1.00 1.00 1.00 2
avg / total 1.00 1.00 1.00 6
The approach used in this basic example seems to work fine with this simple dataset. But this approach is very different from the classification example given on the scikit-lean website that I mentioned above (url repeated here):
http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gp_probabilistic_classification_after_regression.html
So I'm wondering if I am missing something here. So, I would appreciate if anyone could:
With respect to the classification example given on the scikit-learn website:
1.1 explain what the probabilities being generated in this example are probabilities of? Are they the probability of the query instance belonging to the class >0?
1.2 why the example uses a cumulative density function instead of a probability density function?
1.3 why the example divides the predictions made by the model by the square root of the mean square error before they are input into the cumulative density function?
With respect to the basic code example I have listed here, clarify whether or not applying a simple decision boundary to the predictions generated by a gaussian process model is an appropriate way to do binary classification?
Sorry for such a long question and thanks for any help.
In the GP classifier, a standard GP distribution over functions is "squashed," usually using the standard normal CDF (also called the probit function), to map it to a distribution over binary categories.
Another interpretation of this process is through a hierarchical model (this paper has the derivation), with a hidden variable drawn from a Gaussian Process.
In sklearn's gp library, it looks like the output from y_pred, MSE=gp.predict(xx, eval_MSE=True) are the (approximate) posterior means (y_pred) and posterior variances (MSE) evaluated at points in xx before any squashing occurs.
To obtain the probability that a point from the test set belongs to the positive class, you can convert the normal distribution over y_pred to a binary distribution by applying the Normal CDF (see [this paper again] for details).
The hierarchical model of the probit squashing function is defined by a 0 decision boundary (the standard normal distribution is symmetric around 0, meaning PHI(0)=.5). So you should set DECISIONBOUNDARY=0.
Related
My outputs are like this
tensor([[-0.2713, -0.6608, -0.4430, -0.0207, -0.4408, -0.3075],
[-0.2713, -0.6608, -0.4430, -0.0207, -0.4408, -0.3075],
[-0.2713, -0.6608, -0.4430, -0.0207, -0.4408, -0.3075],
[-0.2713, -0.6608, -0.4430, -0.0207, -0.4408, -0.3075]],
grad_fn=)
labels: tensor([5, 6, 6, 6], dtype=torch.int32)`
instead of both being length 4 tensors
how do I change the outputs to a length 4 tensor
please help thank you
I don't know how to find the classes of the probabilities
I have some keras code that I need to convert to Pytorch. I've done some research but so far I am not able to reproduce the results I got from keras. I have spent many hours on this any tips or help is very appreciated.
Here is the keras code I am dealing with. The input shape is (None, 105, 768) where None is the batch size and I want to apply Conv1D to the input. The desire output in keras is (None, 105)
x = tf.keras.layers.Dropout(0.2)(input)
x = tf.keras.layers.Conv1D(1,1)(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Activation('softmax')(x)
What I've tried, but worse in term of results:
self.conv1d = nn.Conv1d(768, 1, 1)
self.dropout = nn.Dropout(0.2)
self.softmax = nn.Softmax()
def forward(self, input):
x = self.dropout(input)
x = x.view(x.shape[0],x.shape[2],x.shape[1])
x = self.conv1d(x)
x = torch.squeeze(x, 1)
x = self.softmax(x)
The culprit is your attempt to swap the dimensions of the input around, since Keras and PyTorch have different conventions for the dimension order.
x = x.view(x.shape[0],x.shape[2],x.shape[1])
.view() does not swap the dimensions, but changes which part of the data is part of a given dimension. You can consider it as a 1D array, then you decide how many steps you take to cover the dimension. An example makes it much simpler to understand.
# Let's start with a 1D tensor
# That's how the underlying data looks in memory.
x = torch.arange(6)
# => tensor([0, 1, 2, 3, 4, 5])
# How the tensor looks when using Keras' convention (expected input)
keras_version = x.view(2, 3)
# => tensor([[0, 1, 2],
# [3, 4, 5]])
# Vertical isn't swapped with horizontal, but the data is arranged differently
# The numbers are still incrementing from left to right
incorrect_pytorch_version = keras_version.view(3, 2)
# => tensor([[0, 1],
# [2, 3],
# [4, 5]])
To swap the dimensions you need to use torch.transpose.
correct_pytorch_version = keras_version.transpose(0, 1)
# => tensor([[0, 3],
# [1, 4],
# [2, 5]])
Should i split my data in to two parts similar in size to use each half for eaxh tasks or i should do grid search on my whole data and then just do cross validation again on my whole data to check my accuracy ?
You need to split the data into test and train (20:80) (eg. test_train_split in sklearn), then run the model with the train data and check the accuracy. If its not what you expect, then you can try applying Hyper parameter Tuning.
You can do this by GridSearchCV, where you need to fit the desired estimator (depending on the type of problem ) and the parameter values.
Attached a sample code :
from sklearn.model_selection import GridSearchCV
# Create the parameter grid based on the results of random search
param_grid = {
'bootstrap': [True],
'max_depth': [50, 55, 60, 65],
'max_features': ["auto","sqrt", 2, 3],
'min_samples_leaf': [1, 2, 3],
'min_samples_split': [2, 3, 4],
'n_estimators': [60, 65, 70, 75]
}
grid_search = GridSearchCV(estimator = rfcv, param_grid = param_grid, cv = 3, n_jobs = -1, verbose = 2)
grid_search.fit(X_train, Y_train)
grid_search.best_params_
Based the best parameter results, you can fine tune the grid search.
Eg, if best parameter value is near 60 for n_estimators then you need to change the values as surrounding to 60 like [50,55,60,60]. To figure out the exact value.
Then build the machine learning model based on the best parameters value. Evaluate the train data accuracy and then predict the result using test data values.
rf = rgf(n_estimators = 70, random_state=0, min_samples_split = 2, min_samples_leaf=1, max_features = 'sqrt',bootstrap='True', max_depth=65)
regressor = rf.fit(X_train,Y_train)
pred_tuned = regressor.predict(X_test)
You can find an improvement in your accuracy !!
As the documentation states
the last state for each sample at index i in a batch will be used as
initial state for the sample of index i in the following batch
does it mean that to split data to batches I need to do it the following way
e.g. let's assume that I am training a stateful RNN to predict the next integer in range(0, 5) given the previous one
# batch_size = 3
# 0, 1, 2 etc in x are samples (timesteps and features omitted for brevity of the example)
x = [0, 1, 2, 3, 4]
y = [1, 2, 3, 4, 5]
batches_x = [[0, 1, 2], [1, 2, 3], [2, 3, 4]]
batches_y = [[1, 2, 3], [2, 3, 4], [3, 4, 5]]
then the state after learning on x[0, 0] will be initial state for x[1, 0]
and x[0, 1] for x[1, 1] (0 for 1 and 1 for 2 etc)?
Is it the right way to do it?
Based on this answer, for which I performed some tests.
Stateful=False:
Normally (stateful=False), you have one batch with many sequences:
batch_x = [
[[0],[1],[2],[3],[4],[5]],
[[1],[2],[3],[4],[5],[6]],
[[2],[3],[4],[5],[6],[7]],
[[3],[4],[5],[6],[7],[8]]
]
The shape is (4,6,1). This means that you have:
1 batch
4 individual sequences = this is batch size and it can vary
6 steps per sequence
1 feature per step
Every time you train, either if you repeat this batch or if you pass a new one, it will see individual sequences. Every sequence is a unique entry.
Stateful=True:
When you go to a stateful layer, You are not going to pass individual sequences anymore. You are going to pass very long sequences divided in small batches. You will need more batches:
batch_x1 = [
[[0],[1],[2]],
[[1],[2],[3]],
[[2],[3],[4]],
[[3],[4],[5]]
]
batch_x2 = [
[[3],[4],[5]], #continuation of batch_x1[0]
[[4],[5],[6]], #continuation of batch_x1[1]
[[5],[6],[7]], #continuation of batch_x1[2]
[[6],[7],[8]] #continuation of batch_x1[3]
]
Both shapes are (4,3,1). And this means that you have:
2 batches
4 individual sequences = this is batch size and it must be constant
6 steps per sequence (3 steps in each batch)
1 feature per step
The stateful layers are meant to huge sequences, long enough to exceed your memory or your available time for some task. Then you slice your sequences and process them in parts. There is no difference in the results, the layer is not smarter or has additional capabilities. It just doesn't consider that the sequences have ended after it processes one batch. It expects the continuation of those sequences.
In this case, you decide yourself when the sequences have ended and call model.reset_states() manually.
When I study Deep MNIST for Experts tutorial, I have many difficulties.
I'd to know why they used Convolution and Pooling in a Multilayer Convolutional Network.
And I don't understand the following two functions.
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
I'd to know the meaning of strides=[1,1,1,1] in conv2d function.
Should we always use ksize=[1, 2, 2, 1] and strides=[1, 2, 2, 1] in max_pool_2x2 function.
What is the difference between padding='SAME' and padding='VALID'
I would say check the following answer. It has a wonderful explanation for the whole convolution operation. This should cover your query for conv2d .
for max pooling,
ksize: is basically the kernal size. Its the size of the window for each dimension of the input tensor. you can change it according to your need. Like in the paper AlexNet they have used ksize=[1, 3, 3, 1] and
stride: The filter is applied to image patches of the same size as the filter and strided according to the strides argument. strides = [1, 2, 2, 1] applies the filter to every other image patch in each dimension, etc.
The difference of padding is explained well in this post.