I have an EEG signal and it contains eye blink artifacts, i read some references and know that can detect eye blink and remove them by using wavelet transform but i don't know that how do it, How to detect eye blink? Have any tutorials for me, after transformed EEG signal into wavelet coefficients, what should i do and which level of daubechies can be used to do that? Thank you!
I don't know whether this will work but you can give it a try.
Wavelet transform works like a filter bank.
Set the wavelet level to such a value so that the last level of the decomposition gives you a filter bank of nearly 0Hz - 5Hz.
Get the coefficients of the detail functions at this level and do a thresholding (soft/hard) on the same.and then compose back the signal using the new coeffiecients
Blinks have a relatively high amplitude and thresholding on them might give you what you want.
If you want to remove eye blinks, a commonly used approach is running Independent Component Analysis (ICA) on the data, identifying the blink artifact and backtransforming to the original data without that independent component. There are other approaches, but ICA works quite well even in very noisy EEG data (e.g. from simultaneous EEG-fMRI sessions).
Eye blinks will generally have a frequency between 2-5Hz.
You can first train a system to capture eyeblinks.
Then use the same to detect the blinks in an eeg signal
Related
Is it possible to decorrelate accelerometer data in real-time? If so, how is it done?
Background:
My application is receiving (X,Y,Z) accelerometer data in real-time (sample rate is 6.75Hz). The sensor is moving in a periodic motion but the motion is not necessarily along only one axis. The 3 signals x(t), y(t) and z(t) are therefore slightly correlated and I would like to know if I can find a rotation matrix (in real time) which can be used to rotate the measured (x,y,z) into a new vector (x*,y*,z*) so that the entire motion is along the z-axis?
I would like to implement the algorithm in C.
Thanks.
What you're trying to do is generally called "principal component analysis". The Wikipedia article is pretty good:
https://en.wikipedia.org/wiki/Principal_component_analysis
For static data you generally use the eigenvectors of the covariance matrix as your new coordinate basis.
PCA in real time is doable, but not super easy. See, for example: http://www.bio-conferences.org/articles/bioconf/pdf/2011/01/bioconf_skills_00055.pdf
I'd like to first of all emphasize that Matt Timmermans' answer has done exactly what people are actually doing when classifying accelerometer data from clinical studies (a project I worked on).
Then: you're observing a sampled signal. In general, if you have a sensor that gives you samples at a rate of 6.75Hz, the highest frequency of a signal you can detect is 6.75Hz/2 = 3.375Hz. Everything that has a frequency higher than that will inherently be aliased back and look like it was something with a frequency f with 0<=f<3.375Hz. If you've not considered this, please go and read up on the Nyquist–Shannon sampling theorem. Especially: shield your sensors (however you do that, e.g. by employing dampeners) from all input above that limit, otherwise your measurements might be worth very little or even nothing. If your sensor does this internally (that's absolutely possible, there are enough accelerometers with analog low pass filters), this has been taken care of. However, document that characteristics of your sensor.
Now, your case is a little bit easier because you know pretty well that your whole observation is going to be periodic, and it's measured along three orthogonal axis.
In this case, just doing three discrete Fourier transforms at once, extracting the "strongest" spectral component over all three channels, and finding the phase of that spectral component (which is but the complex argument of that DFT bin) in the two others would give you something that you can map to a periodic movement around a specific axis in 3D space. If you want to, remove these value (set the bins to 0), and search for strongest component again etc.
Discrete cosine transforms can be done in staggering speed nowadays. with 6.75Hz, no PC in this world will ever get into trouble when you try this while you receive further samples. It's a hilariously low sampling rate.
Another, more elegant (read: you need less samples to compute this) would be using a parametric estimator; in your case, a direction-of-arrival sensor from the world of RF technology with multiple antennas would, as far as I can think, map directly to detection of rotational axis. The classical algorithms here are MUSIC and ESPRIT, and for your case (limited, known amount of oscillating parts), ESPRIT might be the better choice.
I have a problem. I have read many papers about video stabilization. Almost papers mention about smoothing motion by using Kalman Filter, so it's strong and run in real-time applications.
But there is also another filter strongly, that is particle filter.
But why dont we use Partilce filter in smoothing motion to create stabilized video?
Some papers only use particle filter in estimating global motion between frames (motion estimation part).
It is hard to understand them.
Can anyone explain them for me, please?
Thank you so much.
A Kalman Filter is uni-modal. That means it has one belief along with an error covariance matrix to represent the confidence in that belief as a normal distribution. If you are going to smooth some process, you want to get out a single, smoothed result. This is consistent with a KF. It's like using least squares regression to fit a line to data. You are simplifying the input to one result.
A particle filter is multi-modal by its very nature. Where a Kalman Filter represents belief as a central value and a variance around that central value, a particle filter just has many particles whose values are clustered around regions that are more likely. A particle filter can represent essentially the same state as a KF (imagine a histogram of the particles that looks like the classic bell curve of the normal distribution). But a particle filter can also have multiple humps or really any shape at all. This ability to have multiple simultaneous modes is ideally suited to handle problems like estimating motion, because one mode (cluster of particles) can represent one move, and another mode represents a different move. When presented with this ambiguity, a KF would have to abandon one of the possibilities altogether, but a particle filter can keep on believing both things at the same time until the ambiguity is resolved by more data.
I need to determine when someone speaks in an audio stream. I applied the Hamming window and calculated the FFT. How do i detect the human voice from here?
If you want to experiment with your own voice activity detection algorithms, an FFT can be used as an initial stage. Next you might want to try subtracting any characterized stationary spectral noise background. Then you could try using the modified FFT results to calculate a cepstrum (or some weighted cepstral coefficients) for feature extraction. You could then do some statistical pattern matching on whatever feature vectors you decided to extract, and feed the results to a decision algorithm.
Each of the above steps has likely been a research topic, and a good implementation might involve studying dozens of published research papers, which perhaps can be found in your university library.
You don't need to do an FFT for this, you need to implement a Voice Activity Detection algorithm.
what approach would you recommend for finding obstacles in a 2D image?
Here are some key points I came up with till now:
I doubt I can use object recognition based on "database of obstacles" search, since I don't know what might the obstruction look like.
I assume color recognition might be problematic if the path does not differ a lot from the object itself.
Possibly, adding one more camera and computing a 3D image (like a Kinect does) would work, but that would not run as smooth as I require.
To illustrate the problem; robot can ride either left or right side of the pavement. In the following picture, left side is the correct choice:
If you know what the path looks like, this is largely a classification problem. Acquire a bunch of images of path at different distances, illumination, etc. and manually label the ground in each image. Use this labeled data to train a classifier that classifies each pixel as either "road" or "not road." Depending upon the texture of the road, this could be as simple as classifying each pixels' RGB (or HSV) values or using OpenCv's built-in histogram back-projection (i.e. cv::CalcBackProjectPatch()).
I suggest beginning with manual thresholds, moving to histogram-based matching, and only using a full-fledged machine learning classifier (such as a Naive Bayes Classifier or a SVM) if the simpler techniques fail. Once the entire image is classified, all pixels that are identified as "not road" are obstacles. By classifying the road instead of the obstacles, we completely avoided building a "database of objects".
Somewhat out of the scope of the question, the easiest solution is to add additional sensors ("throw more hardware at the problem!") and directly measure the three-dimensional position of obstacles. In order of preference:
Microsoft Kinect: Cheap, easy, and effective. Due to ambient IR light, it only works indoors.
Scanning Laser Rangefinder: Extremely accurate, easy to setup, and works outside. Also very expensive (~$1200-10,000 depending upon maximum range and sample rate).
Stereo Camera: Not as good as a Kinect, but it works outside. If you cannot afford a pre-made stereo camera (~$1800), you can make a decent custom stereo camera using USB webcams.
Note that professional stereo vision cameras can be very fast by using custom hardware (Stereo On-Chip, STOC). Software-based stereo is also reasonably fast (10-20 Hz) on a modern computer.
I am working on HOG descriptors and I am pretty much done with most of the parts, except the fusion of the detection windows.
What I have done so far is; I build a scale space pyramid of the image and for each image on each scale I move the detection window(64x128) and detect humans. In each image a person is detected by more than one window.
So the question is how to fuse all these windows(assume for one person) into one window. Dalal suggests that one should use a robust mod detection algorithm, such as mean-shift. But, I have multiple scales... Should I first estimate the true location of the detection window found in lower levels of the scale space in order to do that?
Any help is appreciated.
Thanks in advance.
My interpretation is that mean shift would give you in effect what you are suggesting.
Essentially, you estimate the probability distribution of the location of the person at the coarsest scale first based upon the strengths of the detector outputs. This gives you a robust estimate of mode.
You can then iteratively refine using the finer scales around the maximum or the mode.
The idea is very similar that used in pyramidal LK tracking, for example. You can also do ensemble processing and/or particle filters.