Computing x,y,z coordinate (3D) from image point (2) - opencv

Referring to the question: Computing x,y coordinate (3D) from image point
If I have the coordinate Z of the point measured in pixel (not in mm), how can I do the same thing shown in the question above?

The calibration matrix A returned by calibrateCamera provides the scaling factors, when paired with the physical dimensions of the sensor. Use the calibrationMatrixValues routine to do the conversions. You can get the sensor dimensions from the camera spec sheet or (sometimes) from the image EXIF header.
Once you have the f_mm from it, it is Z_mm = f_mm / fx * Z_pixels.

Related

How to estimate intrinsic properties of a camera from data?

I am attempting camera calibration from a single RGB image (panorama) given 3D pointcloud
The methods that I have considered all require an intrinsic properties matrix (which I have no access to)
The intrinsic properties matrix can be estimated using the Bouguet’s camera calibration Toolbox, but as I have said, I have a single image only and a single point cloud for that image.
So, knowing 2D image coordinates, extrinsic properties, and 3D world coordinates, how can the intrinsic properties be estimated?
It would seem that the initCameraMatrix2D function from the OpenCV (https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html) works in the same way as the Bouguet’s camera calibration Toolbox and requires multiple images of the same object
I am looking into the Direct linear transformation DLT and Levenberg–Marquardt algorithm with implementations https://drive.google.com/file/d/1gDW9zRmd0jF_7tHPqM0RgChBWz-dwPe1
but it would seem that both use the pinhole camera model and therefore find linear transformation between 3D and 2D points
I can't find my half year old source code, but from top of my head
cx, cy is optical centre which is width/2, height/2 in pixels
fx=fy is focal length in pixels (distance from camera to image plane or axis of rotation)
If you know that image distance from camera to is for example 30cm and it captures image that has 16x10cm and 1920x1200 pixels, size of pixel is 100mm/1200=1/12mm and camera distance (fx,fy) would be 300mm*12px/1mm=3600px and image centre is cx=1920/2=960, cy=1200/2=600. I assume that pixels are square and camera sensor is centered at optical axis.
You can get focal lenght from image size in pixels and measured angle of view.

Calculate focus to map world point on imageplane

I try to calculate the focus value to map a world point on to image plane.
I use raspberry pi camera v2. I did get the camera matrix from opencv it gives me for fx and fy 204. Got nearly the same value by measuring at known distance and size of object.
But when I use a formular I get wrong values.
My formular is
Fpix=sensorsize_pix * focus_mm/sensorsize_mm=1pix*focus_mm/pixsize_mm
I'm using as values:
320x240 image.
Image is taken with 640x480 resolution and then binned 2x2 in Software.
Because the image is already binned by driver I would have a total binning of 4x4.
The original pixel size 1.4um and focus 3.00mm
Which would give me a binned pixelsize of 5.6um.
So I would calculate
Fpix=1pix*3.0mm/0.0056mm=536pix
which is a huge difference to 204pix
The specification for the sensor can be found herelink
As I would consider opencv and measurements as correct. Something must be wrong with my formular.

finding the real world coordinates of an image point

I am searching lots of resources on internet for many days but i couldnt solve the problem.
I have a project in which i am supposed to detect the position of a circular object on a plane. Since on a plane, all i need is x and y position (not z) For this purpose i have chosen to go with image processing. The camera(single view, not stereo) position and orientation is fixed with respect to a reference coordinate system on the plane and are known
I have detected the image pixel coordinates of the centers of circles by using opencv. All i need is now to convert the coord. to real world.
http://www.packtpub.com/article/opencv-estimating-projective-relations-images
in this site and other sites as well, an homographic transformation is named as:
p = C[R|T]P; where P is real world coordinates and p is the pixel coord(in homographic coord). C is the camera matrix representing the intrinsic parameters, R is rotation matrix and T is the translational matrix. I have followed a tutorial on calibrating the camera on opencv(applied the cameraCalibration source file), i have 9 fine chessbordimages, and as an output i have the intrinsic camera matrix, and translational and rotational params of each of the image.
I have the 3x3 intrinsic camera matrix(focal lengths , and center pixels), and an 3x4 extrinsic matrix [R|T], in which R is the left 3x3 and T is the rigth 3x1. According to p = C[R|T]P formula, i assume that by multiplying these parameter matrices to the P(world) we get p(pixel). But what i need is to project the p(pixel) coord to P(world coordinates) on the ground plane.
I am studying electrical and electronics engineering. I did not take image processing or advanced linear algebra classes. As I remember from linear algebra course we can manipulate a transformation as P=[R|T]-1*C-1*p. However this is in euclidian coord system. I dont know such a thing is possible in hompographic. moreover 3x4 [R|T] Vector is not invertible. Moreover i dont know it is the correct way to go.
Intrinsic and extrinsic parameters are know, All i need is the real world project coordinate on the ground plane. Since point is on a plane, coordinates will be 2 dimensions(depth is not important, as an argument opposed single view geometry).Camera is fixed(position,orientation).How should i find real world coordinate of the point on an image captured by a camera(single view)?
EDIT
I have been reading "learning opencv" from Gary Bradski & Adrian Kaehler. On page 386 under Calibration->Homography section it is written: q = sMWQ where M is camera intrinsic matrix, W is 3x4 [R|T], S is an "up to" scale factor i assume related with homography concept, i dont know clearly.q is pixel cooord and Q is real coord. It is said in order to get real world coordinate(on the chessboard plane) of the coord of an object detected on image plane; Z=0 then also third column in W=0(axis rotation i assume), trimming these unnecessary parts; W is an 3x3 matrix. H=MW is an 3x3 homography matrix.Now we can invert homography matrix and left multiply with q to get Q=[X Y 1], where Z coord was trimmed.
I applied the mentioned algorithm. and I got some results that can not be in between the image corners(the image plane was parallel to the camera plane just in front of ~30 cm the camera, and i got results like 3000)(chessboard square sizes were entered in milimeters, so i assume outputted real world coordinates are again in milimeters). Anyway i am still trying stuff. By the way the results are previosuly very very large, but i divide all values in Q by third component of the Q to get (X,Y,1)
FINAL EDIT
I could not accomplish camera calibration methods. Anyway, I should have started with perspective projection and transform. This way i made very well estimations with a perspective transform between image plane and physical plane(having generated the transform by 4 pairs of corresponding coplanar points on the both planes). Then simply applied the transform on the image pixel points.
You said "i have the intrinsic camera matrix, and translational and rotational params of each of the image.” but these are translation and rotation from your camera to your chessboard. These have nothing to do with your circle. However if you really have translation and rotation matrices then getting 3D point is really easy.
Apply the inverse intrinsic matrix to your screen points in homogeneous notation: C-1*[u, v, 1], where u=col-w/2 and v=h/2-row, where col, row are image column and row and w, h are image width and height. As a result you will obtain 3d point with so-called camera normalized coordinates p = [x, y, z]T. All you need to do now is to subtract the translation and apply a transposed rotation: P=RT(p-T). The order of operations is inverse to the original that was rotate and then translate; note that transposed rotation does the inverse operation to original rotation but is much faster to calculate than R-1.

Recover plane from homography

I have used openCV to calculate the homography relating to views of the same plane by using features and matching them. Is there any way to recover the plane itsself or the plane normal from this homography? (I am looking for an equation where H is the input and the normal n is the output.)
If you have the calibration of the cameras, you can extract the normal of the plane, but not the distance to the plane (i.e. the transformation that you obtain is up to scale), as Wikipedia explains. I don't know any implementation to do it, but here you are a couple of papers that deal with that problem (I warn you it is not straightforward): Faugeras & Lustman 1988, Vargas & Malis 2005.
You can recover the real translation of the transformation (i.e. the distance to the plane) if you have at least a real distance between two points on the plane. If that is the case, the easiest way to go with OpenCV is to first calculate the homography, then obtain four points on the plane with their 2D coordinates and the real 3D ones (you should be able to obtain them if you have a real measurement on the plane), and using PnP finally. PnP will give you a real transformation.
Rectifying an image is defined as making epipolar lines horizontal and lying in the same row in both images. From your description I get that you simply want to warp the plane such that it is parallel to the camera sensor or the image plane. This has nothing to do with rectification - I’d rather call it an obtaining a bird’s-eye view or a top view.
I see the source of confusion though. Rectification of images usually involves multiplication of each image with a homography matrix. In your case though each point in sensor plane b:
Xb = Hab * Xa = (Hb * Ha^-1) * Xa, where Ha is homography from the plane in the world to the sensor a; Ha and intrinsic camera matrix will give you a plane orientation but I don’t see an easy way to decompose Hab into Ha and Hb.
A classic (and hard) way is to find a Fundamental matrix, restore the Essential matrix from it, decompose the Essential matrix into camera rotation and translation (up to scale), rectify both images, perform a dense stereo, then fit a plane equation into 3d points you reconstruct.
If you interested in the ground plane and you operate an embedded device though, you don’t even need two frames - a top view can be easily recovered from a single photo, camera elevation from the ground (H) and a gyroscope (or orientation vector) readings. A simple diagram below explains the process in 2D case: first picture shows how to restore Z (depth) coordinate to every point on the ground plane; the second picture shows a plot of the top view with vertical axis being z and horizontal axis x = (img.col-w/2)*Z/focal; Here is img.col is image column, w - image width, and focal is camera focal length. Note that a camera frustum looks like a trapezoid in a birds eye view.

how can i measure distance of an detected object from camera in video using opencv?

All i know is that the height and width of an object in video. can someone guide me to calculate distance of an detected object from camera in video using c or c++? is there any algorithm or formula to do that?
thanks in advance
Martin Ch was correct in saying that you need to calibrate your camera, but as vasile pointed out, it is not a linear change. Calibrating your camera means finding this matrix
camera_matrix = [fx,0 ,cx,
0,fy,cy,
0,0, 1];
This matrix operates on a 3 dimensional coordinate (x,y,z) and converts it into a 2 dimensional homogeneous coordinate. To convert to your regular euclidean (x,y) coordinate just divide the first and second component by the third. So now what are those variables doing?
cx/cy: They exist to let you change coordinate systems if you like. For instance you might want the origin in camera space to be in the top left of the image and the origin in world space to be in the center. In that case
cx = -width/2;
cy = -height/2;
If you are not changing coordinate systems just leave these as 0.
fx/fy: These specify your focal length in units of x pixels and y pixels, these are very often close to the same value so you may be able to just give them the same value f. These parameters essentially define how strong perspective effects are. The mapping from a world coordinate to a screen coordinate (as you can work out for yourself from the above matrix) assuming no cx and cy is
xsc = fx*xworld/zworld;
ysc = fy*yworld/zworld;
As you can see the important quantity that makes things bigger closer up and smaller farther away is the ratio f/z. It is not linear, but by using homogenous coordinates we can still use linear transforms.
In short. With a calibrated camera, and a known object size in world coordinates you can calculate its distance from the camera. If you are missing either one of those it is impossible. Without knowing the object size in world coordinates the best you can do is map its screen position to a ray in world coordinates by determining the ration xworld/zworld (knowing fx).
i don´t think it is easy if have to use camera only,
consider about to use 3rd device/sensor like kinect/stereo camera,
then you will get the depth(z) from the data.
https://en.wikipedia.org/wiki/OpenNI

Resources