i am currently using 20NewsGroup-18828 dataset in weka. I have selected a subset of document with 100 per category (total 2000 documents) which i divided in a split of 70%(training) and 30%(testing) when i tried classification with naive bayes, SVM and K-nn its accuracy is very low.Here are list of operations i am performing on the dataset
StringtoWordVector (indexing and term weighting with Tf-Idf, Smart stopword list, Snowball stemmer)
Dimensionality reduction with feature selection (InformationGain)
Dimensionality reduction with feature transformation (Random Projection)
When i use original dataset with 20,000 docs it performs well but it has duplications like some documents are classified in multiple categories.
Did any one used this dataset or can someone tell me what i am doing wrong ?
Regarding differences between datasets
The main difference between 20newsgroup ( o riginal dataset) and 20newsgroup-18828 (m odified) is:
o contains duplicates, m does not
o contains trivial problem, as it includes newsgroup identification header, m includes only from and subject headers (so it is still easy version of the problem, but harder than o), for example:
FILE 51126 regarding atheism
in original form:
Path:
cantaloupe.srv.cs.cmu.edu!crabapple.srv.cs.cmu.edu!fs7.ece.cmu.edu!europa.eng.gtefsd.com!howland.reston.ans.net!noc.near.net!news.centerline.com!uunet!olivea!sgigate!sgiblab!adagio.panasonic.com!nntp-server.caltech.edu!keith
From: keith#cco.caltech.edu (Keith Allan Schneider) Newsgroups:
alt.atheism Subject: Re: >>>>>>Pompous ass Message-ID:
<1pi9btINNqa5#gap.caltech.edu> Date: 2 Apr 93 20:57:33 GMT References:
<1ou4koINNe67#gap.caltech.edu> <1p72bkINNjt7#gap.caltech.edu>
<93089.050046MVS104#psuvm.psu.edu> <1pa6ntINNs5d#gap.caltech.edu>
<1993Mar30.210423.1302#bmerh85.bnr.ca> <1pcnqjINNpon#gap.caltech.edu>
Organization: California Institute
of Technology, Pasadena Lines: 9 NNTP-Posting-Host:
punisher.caltech.edu
kmr4#po.CWRU.edu (Keith M. Ryan) writes:
>>Then why do people keep asking the same questions over and over?
>Because you rarely ever answer them.
Nope, I've answered each question posed, and most were answered
multiple times.
keith
In modified form (-18828 version)
From: keith#cco.caltech.edu (Keith Allan Schneider)
Subject: Re: >>>>>>Pompous ass
kmr4#po.CWRU.edu (Keith M. Ryan) writes:
>>Then why do people keep asking the same questions over and over?
>Because you rarely ever answer them.
Nope, I've answered each question posed, and most were answered
multiple times.
keith
As you can see, original data is so simple, that you actually can find the name of the label inside of the file... this is why you will always get good scores on such data, even if your whole processing concept is very, very wrong.
So the question is not "what is wrong with 20newsgroup-18828" but rather "what is wrong with the original dataset".
General ideas
First, why would you assume that anything is wrong? You are performing very arbitrary methods of data representation processing (two different dimensionality reduction steps) on the very small (70 training vectors per class) dataset. There is nothing wrong with this data, this is a simple NLP data, which, as most of the NLP tasks require large amounts of data, and "naive" (not NLP-based) dimensionality reduction techniques have no guarantees to actually help.
Secod, even if you do something wrong, in 90% os cases (arbitrary high number) the error is between what user think he does, and what he actually does. So describing what you do won't lead to any help, you have to show what you exactly do (by giving a reproducible example).
Related
I have a set of 20 small document which talks about a particular kind of issue (training data). Now i want to identify those docs out of 10K documents, which are talking about the same issue.
For the purpose i am using the doc2vec implementation:
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize
# Tokenize_and_stem is creating the tokens and stemming and returning the list
# documents_prb store the list of 20 docs
tagged_data = [TaggedDocument(words=tokenize_and_stem(_d.lower()), tags=[str(i)]) for i, _d in enumerate(documents_prb)]
max_epochs = 20
vec_size = 20
alpha = 0.025
model = Doc2Vec(size=vec_size,
alpha=alpha,
min_alpha=0.00025,
min_count=1,
dm =1)
model.build_vocab(tagged_data)
for epoch in range(max_epochs):
print('iteration {0}'.format(epoch))
model.train(tagged_data,
total_examples=model.corpus_count,
epochs=model.iter)
# decrease the learning rate
model.alpha -= 0.0002
# fix the learning rate, no decay
model.min_alpha = model.alpha
model.save("d2v.model")
print("Model Saved")
model= Doc2Vec.load("d2v.model")
#to find the vector of a document which is not in training data
def doc2vec_score(s):
s_list = tokenize_and_stem(s)
v1 = model.infer_vector(s_list)
similar_doc = model.docvecs.most_similar([v1])
original_match = (X[int(similar_doc[0][0])])
score = similar_doc[0][1]
match = similar_doc[0][0]
return score,match
final_data = []
# df_ws is the list of 10K docs for which i want to find the similarity with above 20 docs
for index, row in df_ws.iterrows():
print(row['processed_description'])
data = (doc2vec_score(row['processed_description']))
L1=list(data)
L1.append(row['Number'])
final_data.append(L1)
with open('file_cosine_d2v.csv','w',newline='') as out:
csv_out=csv.writer(out)
csv_out.writerow(['score','match','INC_NUMBER'])
for row in final_data:
csv_out.writerow(row)
But, I am facing the strange issue, the results are highly un-reliable (Score is 0.9 even if there is not a slightest match) and score is changing with great margin every time. I am running the doc2vec_score function. Can someone please help me what is wrong here ?
First & foremost, try not using the anti-pattern of calling train multiple times in your own loop.
See this answer for more details: My Doc2Vec code, after many loops of training, isn't giving good results. What might be wrong?
If there's still a problem after that fix, edit your question to show the corrected code, and a more clear example of the output you consider unreliable.
For example, show the actual doc-IDs & scores, and explain why you think the probe document you're testing should be "not a slightest match" for any documents returned.
And note that if a document is truly nothing like the training documents, for example by using words that weren't in the training documents, it's not really possible for a Doc2Vec model to detect that. When it infers vectors for new documents, all unknown words are ignored. So you'll be left with a document using only known words, and it will return the best matches for that subset of your document's words.
More fundamentally, a Doc2Vec model is really only learning ways to contrast the documents that are in the universe demonstrated by the training set, by their words' cooccurrences. If presented with a document with either totally different words, or words whose frequencies/cooccurrences are totally unlike anything seen before, its output will be essentially random, without much meaningful relationship to other more-typical documents. (That'll be maybe-close, maybe-far, because in a way the training on the 'known universe' tends to fill the whole available space.)
So, you wouldn't want to use a Doc2Vec model trained only only positive examples of what you want to recognize, if you also want to recognize negative examples. Rather, include all kinds, then remember the subset that's relevant for certain in/out decisions – and use that subset for downstream comparisons, or multiple subsets to feed a more-formal classification or clustering algorithm.
The problem is in the picture
Question's image:
Question 2
Many substances that can burn (such as gasoline and alcohol) have a chemical structure based on carbon atoms; for this reason they are called hydrocarbons. A chemist wants to understand how the number of carbon atoms in a molecule affects how much energy is released when that molecule combusts (meaning that it is burned). The chemists obtains the dataset below. In the column on the right, kj/mole is the unit measuring the amount of energy released. examples.
You would like to use linear regression (h a(x)=a0+a1 x) to estimate the amount of energy released (y) as a function of the number of carbon atoms (x). Which of the following do you think will be the values you obtain for a0 and a1? You should be able to select the right answer without actually implementing linear regression.
A) a0=−1780.0, a1=−530.9 B) a0=−569.6, a1=−530.9
C) a0=−1780.0, a1=530.9 D) a0=−569.6, a1=530.9
Since all a0s are negative but two a1s are positive lets figure out the latter first.
As you can see by increasing the number of carbon atoms the energy is become more and more negative, so the relation cannot be positively correlated which rules out options c and d.
Then for the intercept the value that produces the least error is the correct one. For the 1 and 10 (easier to calculate) the outputs are about -2300 and -7000 for a, -1100 and -5900 for b, so one would prefer b over a.
PS: You might be thinking there should be obvious values for a0 and a1 from the data, it's not. The intention of the question is to give you a general understanding of the best fit. Also this way of solving is kinda machine learning as well
I am playing some demos about recurrent neural network.
I noticed that the scale of my data in each column differs a lot. So I am considering to do some preprocess work before I throw data batches into my RNN. The close column is the target I want to predict in the future.
open high low volume price_change p_change ma5 ma10 \
0 20.64 20.64 20.37 163623.62 -0.08 -0.39 20.772 20.721
1 20.92 20.92 20.60 218505.95 -0.30 -1.43 20.780 20.718
2 21.00 21.15 20.72 269101.41 -0.08 -0.38 20.812 20.755
3 20.70 21.57 20.70 645855.38 0.32 1.55 20.782 20.788
4 20.60 20.70 20.20 458860.16 0.10 0.48 20.694 20.806
ma20 v_ma5 v_ma10 v_ma20 close
0 20.954 351189.30 388345.91 394078.37 20.56
1 20.990 373384.46 403747.59 411728.38 20.64
2 21.022 392464.55 405000.55 426124.42 20.94
3 21.054 445386.85 403945.59 473166.37 21.02
4 21.038 486615.13 378825.52 461835.35 20.70
My question is, is preprocessing the data with, say StandardScaler in sklearn necessary in my case? And why?
(You are welcome to edit my question)
It will be beneficial to normalize your training data. Having different features with widely different scales fed to your model will cause the network to weight the features not equally. This can cause a falsely prioritisation of some features over the others in the representation.
Despite that the whole discussion on data preprocessing is controversial either on when exactly it is necessary and how to correctly normalize the data for each given model and application domain there is a general consensus in Machine Learning that running a Mean subtraction as well as a general Normalization preprocessing step is helpful.
In the case of Mean subtraction, the mean of every individual feature is being subtracted from the data which can be interpreted as centering the data around the origin from a geometric point of view. This is true for every dimensionality.
Normalizing the data after the Mean subtraction step results in a normalization of the data dimensionality to approximately the same scale. Note that the different features will loose any prioritization over each other after this step as mentioned above. If you have good reasons to think that the different scales in your features bear important information that the network may need to truly understand the underlying patterns in your dataset, then a normalization will be harmful. A standard approach would be to scale the inputs to have mean of 0 and a variance of 1.
Further preprocessing operations may be helpful in specific cases such as performing PCA or Whitening on your data. Look into the awesome notes of CS231n (Setting up the data and the model) for further reference on these topics as well as for a more detailed explenation of the topics above.
Definetly yes. Most of neural networks work best with data beetwen 0-1 or -1 to 1(depends on output function). Also when some inputs are higher then others network will "think" they are more important. This can make learning very long. Network must first lower weights in this inputs.
I found this https://arxiv.org/abs/1510.01378
If you normalize it may improve convergence so you will get lower training times.
I have a dataset having customer message and final category one of example is following-
key message final category
1 i want customer care no i want to talk with ur team other
2 hi I 9986443603cjhh had qkuiv1uhqllljqvocally q illgi vq noclass
3 hai points not coming checking
like. The dataset is huge file with at least 20 final category type. Please suggest appropriate method to classify the data with a message which will be its final category. I am thinking of making feature_vector with message word and feed it into Bayesian would it be great? Or I have to use other technique.
Thanks a lot.
You can consider word-embedding.
You can download from here the embbedings (in this link- Glove, you can alternatively use word2vec).
The idea is that similar words will have similar vectors.
After you convert each word in your message to a vector you can average all the vectors (or, average using TF-IDF for better results) to get the vector-representation of your message.
Of course, words like qkuiv1uhqllljqvocally will not appear in the vocabulary.
To check your results, you can cluster(using 20-means clustering, if you have 20 classes) all your vectors to see that similar messages cluster to the same group.
I am using Support Vector Machines for document classification. My feature set for each document is a tf-idf vector. I have M documents with each tf-idf vector of size N.
Giving M * N matrix.
The size of M is just 10 documents and tf-idf vector is 1000 word vector. So my features are much larger than number of documents. Also each word occurs in either 2 or 3 documents. When i am normalizing each feature ( word ) i.e. column normalization in [0,1] with
val_feature_j_row_i = ( val_feature_j_row_i - min_feature_j ) / ( max_feature_j - min_feature_j)
It either gives me 0, 1 of course.
And it gives me bad results. I am using libsvm, with rbf function C = 0.0312, gamma = 0.007815
Any recommendations ?
Should i include more documents ? or other functions like sigmoid or better normalization methods ?
The list of things to consider and correct is quite long, so first of all I would recommend some machine-learning reading before trying to face the problem itself. There are dozens of great books (like ie. Haykin's "Neural Networks and Learning Machines") as well as online courses, which will help you with such basics, like those listed here: http://www.class-central.com/search?q=machine+learning .
Getting back to the problem itself:
10 documents is rows of magnitude to small to get any significant results and/or insights into the problem,
there is no universal method of data preprocessing, you have to analyze it through numerous tests and data analytics,
SVMs are parametrical models, you cannot use a single C and gamma values and expect any reasonable results. You have to check dozens of them to even get a clue "where to search". The most simple method for doing so is so called grid search,
1000 of features is a great number of dimensions, this suggest that using a kernel, which implies infinitely dimensional feature space is quite... redundant - it would be a better idea to first analyze simplier ones, which have smaller chance to overfit (linear or low degree polynomial)
finally is tf*idf a good choice if "each word occurs in 2 or 3 documents"? It can be doubtfull, unless what you actually mean is 20-30% of documents
finally why is simple features squashing
It either gives me 0, 1 of course.
it should result in values in [0,1] interval, not just its limits. So if this is a case you are probably having some error in your implementation.