OpenCV: Drawing matches in top and bottom configuration? - opencv

I am trying to use drawmatches function in OpenCV.
It put the image in left and right format. I want the images to be put in top-down format and then draw the matches for more clarity.
Is there a way in which it can be done in OpenCV? Or, I will have to write a new function?

I am afraid you have to write your own function. I think it should not be too complicated.
As a starting point just have a look at https://github.com/Itseez/opencv/blob/2.4/modules/features2d/src/draw.cpp where we have the function _prepareImgAndDrawKeypoints
static void _prepareImgAndDrawKeypoints( const Mat& img1, const vector<KeyPoint>& keypoints1,
const Mat& img2, const vector<KeyPoint>& keypoints2,
Mat& outImg, Mat& outImg1, Mat& outImg2,
const Scalar& singlePointColor, int flags )
{
Size size( img1.cols + img2.cols, MAX(img1.rows, img2.rows) );
for example size should be changed to
Size size( MAX(img1.cols + img2.cols), img1.rows + img2.rows );
and then you can continue to study that function (and the other ones) and complete your task. Maybe you can also contribute to OpenCV too with your new feature.

As a quick workaround, you can pre-rotate both images 90 degrees, detect features, draw the matches and then undo the rotation,
As an example, have these images (taken from here and here):
Result:
Python code : (the resize part is just for fitting the images to the screen size)
import cv2
im1 = cv2.imread('test1.jpg')
im2 = cv2.imread('test2.jpg')
# resize
scale=0.5
n1,m1 = int(im1.shape[0]*scale), int(im1.shape[1]*scale)
n2,m2 = int(im2.shape[0]*scale), int(im2.shape[1]*scale)
im1 = cv2.resize(im1, (m1,n1))
im2 = cv2.resize(im2, (m2,n2))
rotate=True
if rotate:
im1 = cv2.rotate(im1, cv2.ROTATE_90_COUNTERCLOCKWISE)
im2 = cv2.rotate(im2, cv2.ROTATE_90_COUNTERCLOCKWISE)
# gray versions:
im1g = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
im2g = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
# sift detections:
sift = cv2.SIFT_create()
kp1, ds1 = sift.detectAndCompute(im1g,None)
kp2, ds2 = sift.detectAndCompute(im2g,None)
# matching
matcher = cv2.DescriptorMatcher.create('BruteForce')
matches = matcher.knnMatch(ds1,ds2, 2)
# Filter matches using the Lowe's ratio test
ratio_thresh = 0.7
good_matches = []
for i, (m,n) in enumerate(matches):
if m.distance < ratio_thresh * n.distance:
good_matches.append(m)
# draw matches:
im_matches = cv2.drawMatches(im1, kp1, im2, kp2, good_matches,None,
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
# undo pre-rotation
if rotate:
im_matches = cv2.rotate(im_matches, cv2.ROTATE_90_CLOCKWISE)
cv2.imshow('matches', im_matches)

Related

Radius of a disk in a binary image

I have binarized images like this one:
I need to determine the center and radius of the inner solid disk. As you can see, it is surrounded by a textured area which touches it, so that simple connected component detection doesn't work. Anyway, there is a void margin on a large part of the perimeter.
A possible cure could be by eroding until all the texture disappears or disconnects from the disk, but this can be time consuming and the number of iterations is unsure. (In addition, in some unlucky cases there are tiny holes in the disk, which will grow with erosion.)
Any better suggestion to address this problem in a robust and fast way ? (I tagged OpenCV, but this is not mandated, what matters is the approach.)
You can:
Invert the image
Find the largest axis-aligned rectangle containing only zeros, (I used my C++ code from this answer). The algorithm is pretty fast.
Get the center and radius of the circle from the rectangle
Code:
#include <opencv2\opencv.hpp>
using namespace std;
using namespace cv;
// https://stackoverflow.com/a/30418912/5008845
cv::Rect findMaxRect(const cv::Mat1b& src)
{
cv::Mat1f W(src.rows, src.cols, float(0));
cv::Mat1f H(src.rows, src.cols, float(0));
cv::Rect maxRect(0,0,0,0);
float maxArea = 0.f;
for (int r = 0; r < src.rows; ++r)
{
for (int c = 0; c < src.cols; ++c)
{
if (src(r, c) == 0)
{
H(r, c) = 1.f + ((r>0) ? H(r-1, c) : 0);
W(r, c) = 1.f + ((c>0) ? W(r, c-1) : 0);
}
float minw = W(r,c);
for (int h = 0; h < H(r, c); ++h)
{
minw = std::min(minw, W(r-h, c));
float area = (h+1) * minw;
if (area > maxArea)
{
maxArea = area;
maxRect = cv::Rect(cv::Point(c - minw + 1, r - h), cv::Point(c+1, r+1));
}
}
}
}
return maxRect;
}
int main()
{
cv::Mat1b img = cv::imread("path/to/img", cv::IMREAD_GRAYSCALE);
// Correct image
img = img > 127;
cv::Rect r = findMaxRect(~img);
cv::Point center ( std::round(r.x + r.width / 2.f), std::round(r.y + r.height / 2.f));
int radius = std::sqrt(r.width*r.width + r.height*r.height) / 2;
cv::Mat3b out;
cv::cvtColor(img, out, cv::COLOR_GRAY2BGR);
cv::rectangle(out, r, cv::Scalar(0, 255, 0));
cv::circle(out, center, radius, cv::Scalar(0, 0, 255));
return 0;
}
My method is to use morph-open, findcontours, and minEnclosingCircle as follow:
#!/usr/bin/python3
# 2018/11/29 20:03
import cv2
fname = "test.png"
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
th, threshed = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
morphed = cv2.morphologyEx(threshed, cv2.MORPH_OPEN, kernel, iterations = 3)
cnts = cv2.findContours(morphed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
cnt = max(cnts, key=cv2.contourArea)
pt, r = cv2.minEnclosingCircle(cnt)
pt = (int(pt[0]), int(pt[1]))
r = int(r)
print("center: {}\nradius: {}".format(pt, r))
The final result:
center: (184, 170)
radius: 103
My second attempt on this case. This time I am using morphological closing operation to weaken the noise and maintain the signal. This is followed by a simple threshold and a connectedcomponent analysis. I hope this code can run faster.
Using this method, i can find the centroid with subpixel accuracy
('center : ', (184.12244328746746, 170.59771290442544))
Radius is derived from the area of the circle.
('radius : ', 101.34704439389715)
Here is the full code
import cv2
import numpy as np
# load image in grayscale
image = cv2.imread('radius.png',0)
r,c = image.shape
# remove noise
blured = cv2.blur(image,(5,5))
# Morphological closing
morph = cv2.erode(blured,None,iterations = 3)
morph = cv2.dilate(morph,None,iterations = 3)
cv2.imshow("morph",morph)
cv2.waitKey(0)
# Get the strong signal
th, th_img = cv2.threshold(morph,200,255,cv2.THRESH_BINARY)
cv2.imshow("th_img",th_img)
cv2.waitKey(0)
# Get connected components
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(th_img)
print(num_labels)
print(stats)
# displat labels
labels_disp = np.uint8(255*labels/np.max(labels))
cv2.imshow("labels",labels_disp)
cv2.waitKey(0)
# Find center label
cnt_label = labels[r/2,c/2]
# Find circle center and radius
# Radius calculated by averaging the height and width of bounding box
area = stats[cnt_label][4]
radius = np.sqrt(area / np.pi)#stats[cnt_label][2]/2 + stats[cnt_label][3]/2)/2
cnt_pt = ((centroids[cnt_label][0]),(centroids[cnt_label][1]))
print('center : ',cnt_pt)
print('radius : ',radius)
# Display final result
edges_color = cv2.cvtColor(image,cv2.COLOR_GRAY2BGR)
cv2.circle(edges_color,(int(cnt_pt[0]),int(cnt_pt[1])),int(radius),(0,0,255),1)
cv2.circle(edges_color,(int(cnt_pt[0]),int(cnt_pt[1])),5,(0,0,255),-1)
x1 = stats[cnt_label][0]
y1 = stats[cnt_label][1]
w1 = stats[cnt_label][2]
h1 = stats[cnt_label][3]
cv2.rectangle(edges_color,(x1,y1),(x1+w1,y1+h1),(0,255,0))
cv2.imshow("edges_color",edges_color)
cv2.waitKey(0)
Here is an example of using hough circle. It can work if you set the min and max radius to a proper range.
import cv2
import numpy as np
# load image in grayscale
image = cv2.imread('radius.png',0)
r , c = image.shape
# remove noise
dst = cv2.blur(image,(5,5))
# Morphological closing
dst = cv2.erode(dst,None,iterations = 3)
dst = cv2.dilate(dst,None,iterations = 3)
# Find Hough Circle
circles = cv2.HoughCircles(dst
,cv2.HOUGH_GRADIENT
,2
,minDist = 0.5* r
,param2 = 150
,minRadius = int(0.5 * r / 2.0)
,maxRadius = int(0.75 * r / 2.0)
)
# Display
edges_color = cv2.cvtColor(image,cv2.COLOR_GRAY2BGR)
for i in circles[0]:
print(i)
cv2.circle(edges_color,(i[0],i[1]),i[2],(0,0,255),1)
cv2.imshow("edges_color",edges_color)
cv2.waitKey(0)
Here is the result
[185. 167. 103.6]
Have you tried something along the lines of the Circle Hough Transform?
I see that OpenCv has its own implementation. Some preprocessing (median filtering?) might be necessary here, though.
Here is a simple approach:
Erode the image (using a large, circular SE), then find the centroid of the result. This should be really close to the centroid of the central disk.
Compute the mean as a function of the radius of the original image, using the computed centroid as the center.
The output looks like this:
From here, determining the radius is quite simple.
Here is the code, I'm using PyDIP (we don't yet have a binary distribution, you'll need to download and build form sources):
import matplotlib.pyplot as pp
import PyDIP as dip
import numpy as np
img = dip.Image(pp.imread('/home/cris/tmp/FDvQm.png')[:,:,0])
b = dip.Erosion(img, 30)
c = dip.CenterOfMass(b)
rmean = dip.RadialMean(img, center=c)
pp.plot(rmean)
r = np.argmax(rmean < 0.5)
Here, r is 102, as the radius in integer number of pixels, I'm sure it's possible to interpolate to improve precision. c is [184.02, 170.45].

Detect caps on bottles using opencv and python

I know that there are a hundred topics about my question in all over the web, but i would like to ask specific for my problem because I tried almost all solutions without any success.
I am trying to count circles in an image (yes i have already tried hough circles but due to light reflections, i think, on my object is not very robust).
Then I tried to create a classifier (no success i think there is no enough features so the detection is not good)
I have also tried HSV conversation and tried to find my object with color (again I had some problems because of the light and the variations of colors)
As you can see on image, there are 8 caps and i would like to be able to count them.
Using all of this methods, i was able to detect the objects on an image (because I was optimizing all the parameters of functions for the specific image) but as soon as I load a new, similar, image the results was disappointing.
Please follow this link to see the Image
Bellow you can find parts of everything i have tried:
1. Hough circles
img = cv2.imread('frame71.jpg',1)
img = cv2.medianBlur(img,5)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
if img == None:
print "There is no image file. Quiting..."
quit()
circles = cv2.HoughCircles(img,cv.CV_HOUGH_GRADIENT,3,50,
param1=55,param2=125,minRadius=25,maxRadius=45)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
print len(circles[0,:])
cv2.imshow('detected circles',cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
2. HSV Transform, color detection
def image_process(frame, h_low, s_low, v_low, h_up, s_up, v_up, ksize):
temp = ksize
if(temp%2==1):
ksize = temp
else:
ksize = temp+1
#if(True):
# return frame
#thresh = frame
#try:
#TODO: optimize as much as possiblle this part of code
try:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower = np.array([h_low, s_low, v_low],np.uint8)
upper = np.array([h_up,s_up,h_up],np.uint8)
mask = cv2.inRange(hsv, lower, upper)
res = cv2.bitwise_and(hsv,hsv, mask= mask)
thresh = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
#thresh = cv2.threshold(res, 50, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.threshold(thresh, 50, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.medianBlur(thresh,ksize)
except Exception as inst:
print type(inst)
#cv2.imshow('thresh', thresh)
return thresh
3. Cascade classifier
img = cv2.imread('frame405.jpg', 1)
cap_cascade = cv2.CascadeClassifier('haar_30_17_16_stage.xml')
caps = cap_cascade.detectMultiScale(img, 1.3, 5)
#print caps
for (x,y,w,h) in caps:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0),2)
#cv2.rectangle(img, (10,10),(100,100),(0,255,255),4)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
quit()
About training the classifier I really used a lot of variations of images, samples, negatives and positives, number of stages, w and h but the results was not very accurate.
Finally I would like to know from your experience which is the best method I should follow and I will stick on that in order to optimize my detection. Keep in mind that all images are similiar but NOT identical. There are some differences due to light, movement etc
Than you in advance,
I did some experiment with the sample image. I'm posting my results, and if you find it useful, you can improve it further and optimize. Here are the steps:
downsample the image
perform morphological opening
find Hough circles
cluster the circles by radii (bottle circles should get the same label)
filter the circles by a radius threshold
you can also cluster circles by their center x and y coordinates (I haven't done this)
prepare a mask from the filtered circles and extract the possible bottles region
cluster this region by color
Code is in C++. I'm attaching my results.
Mat im = imread(INPUT_FOLDER_PATH + string("frame71.jpg"));
Mat small;
int kernelSize = 9; // try with different kernel sizes. 5 onwards gives good results
pyrDown(im, small); // downsample the image
Mat morph;
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(kernelSize, kernelSize));
morphologyEx(small, morph, MORPH_OPEN, kernel); // open
Mat gray;
cvtColor(morph, gray, CV_BGR2GRAY);
vector<Vec3f> circles;
HoughCircles(gray, circles, CV_HOUGH_GRADIENT, 2, gray.rows/8.0); // find circles
// -------------------------------------------------------
// cluster the circles by radii. similarly you can cluster them by center x and y for further filtering
Mat circ = Mat(circles);
Mat data[3];
split(circ, data);
Mat labels, centers;
kmeans(data[2], 2, labels, TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0), 2, KMEANS_PP_CENTERS, centers);
// -------------------------------------------------------
Mat rgb;
small.copyTo(rgb);
//cvtColor(gray, rgb, CV_GRAY2BGR);
Mat mask = Mat::zeros(Size(gray.cols, gray.rows), CV_8U);
for(size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
float r = centers.at<float>(labels.at<int>(i));
if (r > 30.0f && r < 45.0f) // filter circles by radius (values are based on the sample image)
{
// just for display
circle(rgb, center, 3, Scalar(0,255,0), -1, 8, 0);
circle(rgb, center, radius, Scalar(0,0,255), 3, 8, 0);
// prepare a mask
circle(mask, center, radius, Scalar(255,255,255), -1, 8, 0);
}
}
// use each filtered circle as a mask and extract the region from original downsampled image
Mat rgb2;
small.copyTo(rgb2, mask);
// cluster the masked region by color
Mat rgb32fc3, lbl;
rgb2.convertTo(rgb32fc3, CV_32FC3);
int imsize[] = {rgb32fc3.rows, rgb32fc3.cols};
Mat color = rgb32fc3.reshape(1, rgb32fc3.rows*rgb32fc3.cols);
kmeans(color, 4, lbl, TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0), 2, KMEANS_PP_CENTERS);
Mat lbl2d = lbl.reshape(1, 2, imsize);
Mat lbldisp;
lbl2d.convertTo(lbldisp, CV_8U, 50);
Mat lblColor;
applyColorMap(lbldisp, lblColor, COLORMAP_JET);
Results:
Filtered circles:
Masked:
Segmented:
Hello finally i think I found a way to count caps on bottles.
Read image
Teach (find correct values for HSV up/low limits)
Select desire color (using HSV and mask)
Find contours on the masked image
Find the minCircles for contours
Reject all circles beyond thresholds
I have also order a polarized filter which I think it will reduce glares a lot. I am open to suggestions for further improvement (robustness and speed). Both robustness and speed is crucial for my application.
Thank you.

Illumination normalization in OpenCV

I am working on a face recognition project. I have pictures with different lighting so I need to do illumination normalization. I read a paper which which claims to do illumination normalization. The paper describe the following function and values.
1- gamma correction with gamma = 0.2
2- Difference of Gaussian (DOG) filtering with (sigma0 = 1, sigma1 =2)
3- contrast equalization (truncation threshold of 10 and compressive component 0.1 is used in the paper)
I use CvPow for gamma correction, CvSmooth for DoG and Threshold() with truncate (I don't know how to specify the compression component) but I didn't get the exact image. I used histogram equalization for contrast equalization.
If someone has done it before or has any idea??
Link to the paper: http://lear.inrialpes.fr/pubs/2007/TT07/Tan-amfg07a.pdf
The code is below: (Python code of Peb Aryan converted to JAVACV)
public static IplImage preprocessImg(IplImage img)
{
IplImage gf = cvCreateImage(cvSize(img.width(),img.height()),IPL_DEPTH_32F, 1 );
IplImage gr = IplImage.create(img.width(),img.height(), IPL_DEPTH_8U, 1);
IplImage tr = IplImage.create(img.width(),img.height(), IPL_DEPTH_8U, 1);
IplImage b1 = IplImage.create(img.width(),img.height(),IPL_DEPTH_32F, 1 );
IplImage b2 = IplImage.create(img.width(),img.height(),IPL_DEPTH_32F, 1 );
IplImage b3 = IplImage.create(img.width(),img.height(),IPL_DEPTH_32F, 1 );
CvArr mask = IplImage.create(0,0,IPL_DEPTH_8U, 1 );
cvCvtColor(img, gr, CV_BGR2GRAY);
gamma(gr,gr,gf);
cvSmooth(gf,b1,CV_GAUSSIAN, 1);
cvSmooth(gf,b2,CV_GAUSSIAN,23);
cvSub(b1,b2,b2,mask);
cvConvertScale(b2,gr,127,127);
cvEqualizeHist(gr, gr);
//cvThreshold(gr,tr,255,0,CV_THRESH_TRUNC);
return gr;
}
public static void gamma(IplImage src,IplImage dst, IplImage temp)
{
cvConvertScale(src,temp, 1.0/255,0);
cvPow(temp, temp, 0.2);
cvConvertScale(temp, dst, 255,0);
}
Here is the result of my attempt:
And the reference from the paper:
Don't know if it's too late for you.
In the original paper, DoG was performed by a given sigma, here your radius(23) it too big. Try radius = 7 and radius = 1. About the equalization step, it's different from the paper. you need implement one by yourself.
BTW: some basic functions like cvSmooth was not implemented right for your application. You probably need to implement by yourself to get a better result.

How to apply RANSAC on SURF, SIFT and ORB matching results

I'm working on image processing. I want to match 2D Features and I did many tests on SURF, SIFT, ORB.How can I apply RANSAC on SURF/SIFT/ORB in OpenCV?
OpenCV has the function cv::findHomography which can optionally use RANSAC to find the homography matrix relating two images. You can see an example of this function in action here.
Specifically the section of code you are interested in is:
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
You can then use the function cv::perspectiveTransform to warp the images according to the homography matrix.
Other options for cv::findHomography other than CV_RANSAC are 0 which uses every point and CV_LMEDS which uses the Least-Median method. More info can be found in the OpenCV camera calibration documentation here.
Here is the python implementation of applying ransac using skimage either with ProjectiveTransform or AffineTransform (i.e. Homography) model on obtained SIFT / SURF keypoints. This implementation first does Lowe's ratio test on obtained keypoints then it does ransac on filtered keypoints from Lowe's ratio test.
import cv2
from skimage.measure import ransac
from skimage.transform import ProjectiveTransform, AffineTransform
import numpy as np
def siftMatching(img1, img2):
# Input : image1 and image2 in opencv format
# Output : corresponding keypoints for source and target images
# Output Format : Numpy matrix of shape: [No. of Correspondences X 2]
surf = cv2.xfeatures2d.SURF_create(100)
# surf = cv2.xfeatures2d.SIFT_create()
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# Lowe's Ratio test
good = []
for m, n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1, 2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1, 2)
# Ransac
model, inliers = ransac(
(src_pts, dst_pts),
AffineTransform, min_samples=4,
residual_threshold=8, max_trials=10000
)
n_inliers = np.sum(inliers)
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in src_pts[inliers]]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in dst_pts[inliers]]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None)
cv2.imshow('Matches', image3)
cv2.waitKey(0)
src_pts = np.float32([ inlier_keypoints_left[m.queryIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
dst_pts = np.float32([ inlier_keypoints_right[m.trainIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
return src_pts, dst_pts

OpenCV: Incorrect contour around blobs

I'm trying to draw contours around blobs in a binary image, however, sometimes, openCV draws a single contour around two distinct blobs. below is an example. How can i solve this issue?
Here it should draw two bounding boxes for the blob on the right and separately for the one of the left. I agree they are close but enough distance in between them. I'm only drawing External contours instead of the tree or list. I'm also using cvFindNextContour(contourscanner) as this is a easier implementation for my case.
Thanks
EDIT:
Image displayed in the "output" window is from a different function which does just image subtraction. Image displayed in the "contours" window is in the function pplfind(). "output" image is passed to img_con().
IplImage* img_con(IplImage* image){
int ppl;
CvMemStorage* memstr = cvCreateMemStorage();
IplImage* edges = cvCreateImage(cvGetSize(image),8,1);
cvCanny(image,edges,130,255);
CvContourScanner cscan = cvStartFindContours(image,memstr,sizeof(CvContour),CV_RETR_EXTERNAL,CV_CHAIN_APPROX_NONE,cvPoint(0,0));
ppl = pplfind(cscan,cvGetSize(image));
if (ppl !=0 )
printf("Estimated number of people: %d\n",ppl);
cvEndFindContours(&cscan);
cvClearMemStorage(memstr);
return edges;
}
int pplfind(CvContourScanner cscan, CvSize frSize){
ofstream file; char buff[50];
file.open("box.txt",ofstream::app);
int ppl =0;
CvSeq* c;
IplImage *out = cvCreateImage(frSize,8,3);
while (c = cvFindNextContour(cscan)){
CvRect box = cvBoundingRect(c,1);
if ((box.height > int(box.width*1.2))&&(box.height>20)){//&&(box.width<20)){//
ppl++;
cvRectangle(out,cvPoint(box.x,box.y),cvPoint(box.x+box.width,box.y+box.height),CV_RGB(255,0,50),1);
cvShowImage("contours",out);
//cvWaitKey();
}
//printf("Box Height: %d , Box Width: %d ,People: %d\n",box.height,box.width,ppl);
//cvWaitKey(0);
int coord = sprintf_s(buff,"%d,%d,%d\n",box.width,box.height,ppl);
file.write(buff,coord);
}
file.close();
cvReleaseImage(&out);
return ppl;
}
I've never used cvFindNextContour, but running cvFindContours with CV_RETR_EXTERNAL on your image seems to work fine:
I use OpenCV + Python, so this code might not be useful for you, but for the sake of completeness here it goes:
contours = cv.findContours(img, cv.CreateMemStorage(0), mode=cv.CV_RETR_EXTERNAL)
while contours:
(x,y,w,h) = cv.BoundingRect(contours)
cv.Rectangle(colorImg, (x,y), (x+w,y+h), cv.Scalar(0,255,255,255))
contours = contours.h_next()
Edit: you asked how to draw only those contours with certain properties; it would be something like this:
contours = cv.findContours(img, cv.CreateMemStorage(0), mode=cv.CV_RETR_EXTERNAL)
while contours:
(x,y,w,h) = cv.BoundingRect(contours)
if h > w*1.2 and h > 20:
cv.Rectangle(colorImg, (x,y), (x+w,y+h), cv.Scalar(0,255,255,255))
contours = contours.h_next()

Resources