I want to find/check subImage/template image in main image and want to know its coordinates,
I have used code given at following link to implement it,
Check presence of subimage in image in iOS
It is working fine, if the size of the template image is exactly same as size of the matching part of larger image.
But it is not giving result properly if the subimage is scaled down or scaled up than matching part of larger image.
Use OpenCV Feature Detection. it is more accurate than template matching..
Please try with this code..
-(void)featureDetection:(UIImage*)largerImage withImage:(UIImage*)subImage
{
cv::Mat tempMat1 = [largerImage CVMat];
cv::Mat tempMat2 = [subImage CVMat];
cv::cvtColor(tempMat1, tempMat1, CV_RGB2GRAY);
cv::cvtColor(tempMat2, tempMat2, CV_RGB2GRAY);
if( !tempMat1.data || !tempMat2.data ) {
return;
}
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 25;
cv::SurfFeatureDetector detector( minHessian ); // More Accurate bt take more time..
//cv::FastFeatureDetector detector( minHessian ); //Less Accurate bt take less time..
std::vector<cv::KeyPoint> keypoints_1, keypoints_2;
detector.detect( tempMat1, keypoints_1 );
detector.detect( tempMat2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors)
cv::SurfDescriptorExtractor extractor;
cv::Mat descriptors_1, descriptors_2;
extractor.compute( tempMat1, keypoints_1, descriptors_1 );
extractor.compute( tempMat2, keypoints_2, descriptors_2 );
std::vector<cv::Point2f> obj_corners(4);
//Get the corners from the object
obj_corners[0] = (cvPoint(0,0));
obj_corners[1] = (cvPoint(tempMat2.cols,0));
obj_corners[2] = (cvPoint(tempMat2.cols,tempMat2.rows));
obj_corners[3] = (cvPoint(0, tempMat2.rows));
//-- Step 3: Matching descriptor vectors with a brute force matcher
//cv::BruteForceMatcher < cv::L2<float> > matcher;
cv::FlannBasedMatcher matcher;
//std::vector< cv::DMatch > matches;
std::vector<cv::vector<cv::DMatch > > matches;
std::vector<cv::DMatch > good_matches;
std::vector<cv::Point2f> obj;
std::vector<cv::Point2f> scene;
std::vector<cv::Point2f> scene_corners(4);
cv::Mat H;
matcher.knnMatch( descriptors_2, descriptors_1, matches,2);
for(int i = 0; i < cv::min(tempMat1.rows-1,(int) matches.size()); i++) {
if((matches[i][0].distance < 0.6*(matches[i][1].distance)) && ((int) matches[i].size()<=2 && (int) matches[i].size()>0)) {
good_matches.push_back(matches[i][0]);
}
}
cv::Mat img_matches;
drawMatches( tempMat2, keypoints_2, tempMat1, keypoints_1, good_matches, img_matches );
NSLog(#"good matches %lu",good_matches.size());
if (good_matches.size() >= 4) {
for( int i = 0; i < good_matches.size(); i++ ) {
//Get the keypoints from the good matches
obj.push_back( keypoints_2[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_1[ good_matches[i].trainIdx ].pt );
}
H = findHomography( obj, scene, CV_RANSAC );
perspectiveTransform( obj_corners, scene_corners, H);
NSLog(#"%f %f",scene_corners[0].x,scene_corners[0].y);
NSLog(#"%f %f",scene_corners[1].x,scene_corners[1].y);
NSLog(#"%f %f",scene_corners[2].x,scene_corners[2].y);
NSLog(#"%f %f",scene_corners[3].x,scene_corners[3].y);
//Draw lines between the corners (the mapped object in the scene image )
line( tempMat1, scene_corners[0], scene_corners[1], cvScalar(0, 255, 0), 4 );
line( tempMat1, scene_corners[1], scene_corners[2], cvScalar( 0, 255, 0), 4 );
line( tempMat1, scene_corners[2], scene_corners[3], cvScalar( 0, 255, 0), 4 );
line( tempMat1, scene_corners[3], scene_corners[0], cvScalar( 0, 255, 0), 4 );
}
// View matching..
UIImage *resultimage = [UIImage imageWithCVMat:img_matches];
UIImageView *imageview = [[UIImageView alloc] initWithImage:resultimage];
imageview.frame = CGRectMake(0, 0, 320, 240);
[self.view addSubview:imageview];
// View Result
UIImage *resultimage2 = [UIImage imageWithCVMat:tempMat1];
UIImageView *imageview2 = [[UIImageView alloc] initWithImage:resultimage2];
imageview2.frame = CGRectMake(0, 240, 320, 240);
[self.view addSubview:imageview2];
}
Related
a similar question like mine was already posted, but there is still some part which doesn't fit to my current problem. I use Xcode
and Objective C++ to work with openCV.
What I do want to do is to create some bounding boxes and circles around human eyes in photos. I have used the following code but this does not work:
-(void)detectEye {
cv::Mat src_gray;
int thresh = 100;
RNG rng(12345);
NSString *path = #"/Users/NazarMedeiros/Desktop/image.jpg";
cv::Mat src = cv::imread("/Users/NazarMedeiros/Downloads/face.jpg");
if (src.empty())
return;
cv::cvtColor(src, src_gray, CV_BGR2GRAY );
cv::blur(src_gray, src_gray, cv::Size(3,3) );
cv::Mat threshold_output;
std::vector<std::vector<cv::Point> > contours;
std::vector<Vec4i> hierarchy;
/// Detect edges using Threshold
cv::threshold( src_gray, threshold_output, thresh, 255, THRESH_BINARY );
/// Find contours
cv::findContours(threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );
/// Approximate contours to polygons + get bounding rects and circles
std::vector<std::vector<cv::Point> > contours_poly( contours.size() );
std::vector<cv::Rect> boundRect( contours.size() );
std::vector<Point2f>center( contours.size() );
std::vector<float>radius( contours.size() );
for(int i = 0; i < contours.size(); i++ ) {
cv::approxPolyDP(cv::Mat(contours[i]), contours_poly[i], 3, true );
boundRect[i] = cv::boundingRect(cv::Mat(contours_poly[i]) );
cv::minEnclosingCircle( (cv::Mat)contours_poly[i], center[i], radius[i] );
}
/// Draw polygonal contour + bonding rects + circles
Mat drawing = Mat::zeros( threshold_output.size(), CV_8UC3 );
for(int i = 0; i < contours.size(); i++ ) {
cv::Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
cv::drawContours( drawing, contours_poly, i, color, 1, 8, std::vector<Vec4i>(), 0, cv::Point() );
cv::circle( drawing, center[i], (int)radius[i], color, 2, 8, 0 );
}
imwrite([path UTF8String], src);}
}
The imwrite-function does not save my image..
Can anyone help me, please?
Best regards,
Nazar Medeiros
Try convert "drawing" to UIImage
- (UIImage *)UIImageFromCVMat:(cv::Mat)cvMat
{
NSData *data = [NSData dataWithBytes:cvMat.data length:cvMat.elemSize()*cvMat.total()];
CGColorSpaceRef colorSpace;
if (cvMat.elemSize() == 1) {
colorSpace = CGColorSpaceCreateDeviceGray();
} else {
colorSpace = CGColorSpaceCreateDeviceRGB();
}
CGDataProviderRef provider = CGDataProviderCreateWithCFData((__bridge CFDataRef)data);
// Creating CGImage from cv::Mat
CGImageRef imageRef = CGImageCreate(cvMat.cols, //width
cvMat.rows, //height
8, //bits per component
8 * cvMat.elemSize(), //bits per pixel
cvMat.step[0], //bytesPerRow
colorSpace, //colorspace
kCGImageAlphaNone|kCGBitmapByteOrderDefault,// bitmap info
provider, //CGDataProviderRef
NULL, //decode
false, //should interpolate
kCGRenderingIntentDefault //intent
);
// Getting UIImage from CGImage
UIImage *finalImage = [UIImage imageWithCGImage:imageRef];
CGImageRelease(imageRef);
CGDataProviderRelease(provider);
CGColorSpaceRelease(colorSpace);
return finalImage;
}
I try to match multi-object with rotation using a simple template like a smile face template
,and I wanna detect it in the test image like test image
I have tried to using Features2D and Homography to detect, however there are many problems.
P1: It seems this keypoints matching method is not accurate for SIMPLE template(I have tried this method in another template which is much more complicated, the matching result is better). Is there any method on this problem?
P2: Definitely this method is not suitable in multi-object test image. How could I match multiple objects using a single template?(the premise is I don't know the number and location of objects in the template)
Below is my function code.
`//load image
Mat img1 = imread( "2.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat img2 = imread( "1.png", CV_LOAD_IMAGE_GRAYSCALE );
//-- Step 1: Detect the keypoints using SURF Detector
SurfFeatureDetector detector( hessian );
vector<KeyPoint> keypoints1, keypoints2;
detector.detect( img1, keypoints1 );
detector.detect( img2, keypoints2 );
//-- Step 2: Extract the keypoints using SURF Extractor
Mat descriptors1,descriptors2;// extract keypoints
SurfDescriptorExtractor extractor; //Create Descriptor Extractor
extractor.compute( img1, keypoints1, descriptors1 );
extractor.compute( img2, keypoints2, descriptors2 );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//-- Draw only "good" matches
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols,0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
`
I am a beginner in computer-vision,and it is my first time asking on this forum. Many thanks for your help!
If your problem is to detect only that kind of images, a simple thing that you can do is to use a circle detector. And you can group the point of the bigger circle (head) and the points of the eyes. If you know the position of the centroids of those 3 circles, you can have the position and rotation of the face by studying where are the eyes.
In the image, the red points represent the centroids of the circles, you can get the head position by finding where the main centroid is, alpha is the angle between the right eye and the main centroid. If you can find the new angle you can compute theta which will indicate the rotation of the face, and maybe this could work even scale changes
I am trying to detect an object using the SurfFeatureDetect and FLANN matcher. However, the code is not able to detect the image accurately. I have also posted the results in pictorial format.
Here's my code from the opencv tutorial website
int main(int argc, char** argv){
if (argc != 3){
readme(); return -1;
}
Mat img_object = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img_scene = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);
if (!img_object.data || !img_scene.data)
{
std::cout << " --(!) Error reading images " << std::endl; return -1;
}
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 100;
SurfFeatureDetector detector(minHessian);
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect(img_object, keypoints_object);
detector.detect(img_scene, keypoints_scene);
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute(img_object, keypoints_object, descriptors_object);
extractor.compute(img_scene, keypoints_scene, descriptors_scene);
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for (int i = 0; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for (int i = 0; i < descriptors_object.rows; i++)
{
if (matches[i].distance < 3 * min_dist)
{
good_matches.push_back(matches[i]);
}
}
Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for (int i = 0; i < good_matches.size(); i++)
{
//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
}
Mat H = findHomography(obj, scene, CV_RANSAC);
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0, 0); obj_corners[1] = cvPoint(img_object.cols, 0);
obj_corners[2] = cvPoint(img_object.cols, img_object.rows); obj_corners[3] = cvPoint(0, img_object.rows);
std::vector<Point2f> scene_corners(4);
perspectiveTransform(obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line(img_matches, scene_corners[0] + Point2f(img_object.cols, 0), scene_corners[1] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[1] + Point2f(img_object.cols, 0), scene_corners[2] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[2] + Point2f(img_object.cols, 0), scene_corners[3] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[3] + Point2f(img_object.cols, 0), scene_corners[0] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
//-- Show detected matches
imshow("Good Matches & Object detection", img_matches);
waitKey(0);
return 0;}
/** #function readme */
void readme()
{
std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl;}
That is a very common failure. The problem is that the homography has 8 degree of freedom (8DOF). This means that you need at least 4 correct correspondences to calculate a good homography:
As you can see, the homography has 8 parameters (the last parameter h33 is just a scale factor).
The problem arises when other than good corrspondces (inlier) you need to filter out bad correspondences (outlier). When the are more outliers than inliers (total/outliers > 50%) the RANSAC procedure cannot find the outlier and you obtain weird results.
Solutions to this problem are not easy. You could:
Use a training image with a similar out-of-plane rotation (and a similar scale) of the object in your query image.
Or, use a transformation with less degree of freedom (such as similarity transform). In this way you will need less inliers. Altho OpenCV lacks support for this simpler transformation with a robust fitting method.
Anyone familiar with this error? I tested a surf descriptor in real-time and it worked well but after few seconds it crashes and I got this error.
It was related when no points were detected. I run my code again and have the detected object stays for more than 2 mins and still no error. but when I removed the object and there were no points, it crashes again after 40 secs.
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/nonfree/features2d.hpp"
#include "opencv2/legacy/legacy.hpp"
using namespace cv;
using namespace std;
char key = 'a';
int framecount = 0;
SurfFeatureDetector detector(1000);
SurfDescriptorExtractor extractor;
FlannBasedMatcher matcher;
Mat frame, des_object, image;
Mat des_image, img_matches, H;
std::vector<KeyPoint> kp_object;
std::vector<Point2f> obj_corners(4);
std::vector<KeyPoint> kp_image;
std::vector<vector<DMatch > > matches;
std::vector<DMatch > good_matches;
std::vector<Point2f> obj;
std::vector<Point2f> scene;
std::vector<Point2f> scene_corners(4);
int main()
{
//reference image
Mat object = imread("D:/milo.jpg", CV_LOAD_IMAGE_GRAYSCALE );
if( !object.data )
{
std::cout<< "Error reading object " << std::endl;
return -1;
}
//compute detectors and descriptors of reference image
detector.detect( object, kp_object );
extractor.compute( object, kp_object, des_object );
//create video capture object
CvCapture* capture = cvCaptureFromCAM(0);
cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 270);
cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 190);
//Get the corners from the object
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( object.cols, 0 );
obj_corners[2] = cvPoint( object.cols, object.rows );
obj_corners[3] = cvPoint( 0, object.rows );
//wile loop for real time detection
while (key != 27)
{
Mat frame;
frame = cvQueryFrame(capture);
if (framecount < 5)
{
framecount++;
continue;
}
Mat des_image, img_matches;
std::vector<KeyPoint> kp_image;
std::vector<vector<DMatch > > matches;
std::vector<DMatch > good_matches;
std::vector<Point2f> obj;
std::vector<Point2f> scene;
std::vector<Point2f> scene_corners(4);
Mat H;
Mat image;
cvtColor(frame, image, CV_RGB2GRAY);
detector.detect( image, kp_image );
extractor.compute( image, kp_image, des_image );
matcher.knnMatch(des_object, des_image, matches, 2);
int goodMatchesCounter =0;
for(int i = 0; i < min(des_image.rows-1,(int) matches.size()); i++) //THIS LOOP IS
SENSITIVE TO SEGFAULTS
{
if(((int)matches[i].size()<=2 && (int)matches[i].size()>0) && (matches[i}
[0].distance<0.6*(matches[i][1].distance)))
{
// good_matches.push_back(matches[i][0]);
obj.push_back( kp_object[ matches[i][0].queryIdx ].pt );
scene.push_back( kp_image[ matches[i][0].trainIdx ].pt );
goodMatchesCounter++;
}
}
//Draw only "good" matches
// drawMatches( object, kp_object, image, kp_image, good_matches, img_matches,
Scalar::all(-1), Scalar::all(-1), vector<char>(),
DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
if (goodMatchesCounter >= 4)
{
H = findHomography( obj, scene, CV_RANSAC );
perspectiveTransform( obj_corners, scene_corners, H);
//Draw lines between the corners (the mapped object in the scene image )
line( image, scene_corners[0], scene_corners[1], Scalar( 0, 0, 0), 4 );
line( image, scene_corners[1], scene_corners[2], Scalar( 0, 0, 0),
4 );
line( image, scene_corners[2], scene_corners[3], Scalar( 0, 0, 0),
4 );
line( image, scene_corners[3], scene_corners[0], Scalar( 0, 0, 0),
4 );
}
//Show detected matches
imshow( "Good Matches", image );
key = waitKey(1);
}
return 0;
}
OpenCV 2.4.5, CUDA 5.0
I tried to transfer my SURF matcher from the CPU to the GPU and got such a strange result. I use knnMatch and findHomography + perspectiveTransform together with my function, which checks the corners of the bounding box for the result to more precision.
GPU part:
const int baseImagesSize = baseImages.size();
SURF_GPU surf(1500);
surf.extended = false;
GpuMat keypoints_test_GPU, descriptors_test_GPU;
surf(frame, GpuMat(), keypoints_test_GPU, descriptors_test_GPU);
vector<float> descriptors_test_CPU;
surf.downloadDescriptors(descriptors_test_GPU, descriptors_test_CPU);
Mat descriptors_test_CPU_Mat(descriptors_test_CPU);
vector<Point2f> objs_corners(4);
BruteForceMatcher_GPU< L2<float> > matcher;
vector<KeyPoint> keypoints_test_CPU;
surf.downloadKeypoints(keypoints_test_GPU, keypoints_test_CPU);
for (int i = 0; i < baseImagesSize; ++i)
{
//Get the corners from the object
objs_corners[0] = cvPoint(0,0);
objs_corners[1] = cvPoint( baseImages[i].cols, 0 );
objs_corners[2] = cvPoint( baseImages[i].cols, baseImages[i].rows );
objs_corners[3] = cvPoint( 0, baseImages[i].rows );
//cout<<endl<<objs_corners[0]<<" "<<objs_corners[1]<<" "<<objs_corners[2]<<" "<<objs_corners[3]<<endl;
GpuMat keypoints_tmp_GPU, descriptors_tmp_GPU;
surf(baseImages[i], GpuMat(), keypoints_tmp_GPU, descriptors_tmp_GPU);
GpuMat trainIdx, distance;
vector< vector<DMatch> > matches;
matcher.knnMatch(descriptors_test_GPU, descriptors_tmp_GPU, matches, 2);
vector<KeyPoint> keypoints_tmp_CPU;
surf.downloadKeypoints(keypoints_tmp_GPU, keypoints_tmp_CPU);
std::vector<DMatch > good_matches;
for(int k = 0; k < min(descriptors_test_CPU_Mat.rows-1,(int) matches.size()); k++) //THIS LOOP IS SENSITIVE TO SEGFAULTS
{
if((matches[k][0].distance < 0.6*(matches[k][1].distance)) && ((int) matches[k].size()<=2 && (int) matches[k].size()>0))
{
good_matches.push_back(matches[k][0]);
}
}
vector<Point2f> obj;
vector<Point2f> scene;
vector<Point2f> scene_corners(4);
Mat H;
Mat img (baseImages[i]), img_matches, frame_cpu (frame);
std::ostringstream o_stream;
o_stream<<"Logo_save/"<<baseImagesNames[i];
try
{
drawMatches( img, keypoints_tmp_CPU, frame_cpu, keypoints_test_CPU, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
imwrite(o_stream.str(),img_matches);
}
catch(...)
{
cout<<"Error in drawMatches name: "<< baseImagesNames[i]<<endl;
}
if (good_matches.size() >= 4)
{
for( int k = 0; k < good_matches.size(); k++ )
{
//Get the keypoints from the good matches
obj.push_back( (keypoints_tmp_CPU)[ good_matches[k].queryIdx ].pt );
scene.push_back( keypoints_test_CPU[ good_matches[k].trainIdx ].pt );
}
cout<<good_matches.size()<<" "<<baseImagesNames[i]<<endl;
H = findHomography( obj, scene, CV_RANSAC);
perspectiveTransform( objs_corners, scene_corners, H);
bool falseDetect = isSmallAngle(scene_corners);
//cout<< falseDetect<< endl;
if(!falseDetect)
{
cout<<"DETECT "<<baseImagesNames[i]<<endl;
}
}
matcher.clear();
}
Bad result on GPU (MIN_HESSIAN==1500):
Bad result on GPU (MIN_HESSIAN==400):
CPU part:
SurfFeatureDetector detector( MIN_HESSIAN );//MIN_HESSIAN==400
const int baseImagesSize = baseImages.size();
vector< vector<KeyPoint> > kp_objects(baseImagesSize);
//Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
vector<Mat> des_objects(baseImagesSize);
FlannBasedMatcher matcher;
//namedWindow("SURF feature detector");
vector< vector<Point2f> > objs_corners(baseImagesSize,vector<Point2f>(4));
for (int i = 0; i < baseImagesSize; ++i)
{
detector.detect(baseImages[i], kp_objects[i]);
extractor.compute(baseImages[i], kp_objects[i], des_objects[i]);
//Get the corners from the object
(objs_corners[i])[0] = cvPoint(0,0);
(objs_corners[i])[1] = cvPoint( baseImages[i].cols, 0 );
(objs_corners[i])[2] = cvPoint( baseImages[i].cols, baseImages[i].rows );
(objs_corners[i])[3] = cvPoint( 0, baseImages[i].rows );
}
Mat des_image;
std::vector<KeyPoint> kp_image;
Mat image;
cvtColor(frame, image, CV_RGB2GRAY);
detector.detect( image, kp_image );
extractor.compute( image, kp_image, des_image );
for (int i = 0; i < baseImagesSize; ++i)
{
Mat img_matches;
std::vector<vector<DMatch > > matches;
std::vector<DMatch > good_matches;
std::vector<Point2f> obj;
std::vector<Point2f> scene;
std::vector<Point2f> scene_corners(4);
Mat H;
matcher.knnMatch(des_objects[i], des_image, matches, 2);
for(int k = 0; k < min(des_image.rows-1,(int) matches.size()); k++) //THIS LOOP IS SENSITIVE TO SEGFAULTS
{
if((matches[k][0].distance < 0.6*(matches[k][4].distance)) && ((int) matches[k].size()<=2 && (int) matches[k].size()>0))
{
good_matches.push_back(matches[k][0]);
}
}
//Draw only "good" matches
std::ostringstream o_stream;
o_stream<<"Logo_save/"<<baseImagesNames[i];
try
{
drawMatches( baseImages[i], kp_objects[i], image, kp_image, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
imwrite(o_stream.str(),img_matches);
}
catch(...)
{
cout<<"Error in drawMatches name: "<< baseImagesNames[i]<<endl;
}
if (good_matches.size() >= 4)
{
for( int k = 0; k < good_matches.size(); k++ )
{
//Get the keypoints from the good matches
obj.push_back( (kp_objects[i])[ good_matches[k].queryIdx ].pt );
scene.push_back( kp_image[ good_matches[k].trainIdx ].pt );
}
H = findHomography( obj, scene, CV_RANSAC);
perspectiveTransform( objs_corners[i], scene_corners, H);
bool falseDetect = isSmallAngle(scene_corners);
if(!falseDetect)
{
cout<<"DETECT "<<baseImagesNames[i]<<endl;
}
}
}
Good result on CPU (MIN_HESSIAN==400):
Problem solved here topic
Swap parameters in drawMatches call:
drawMatches(frame_cpu, keypoints_test_CPU, img, keypoints_tmp_CPU, ...);
Swap keypoints_tmp_CPU and keypoints_test_CPU:
obj.push_back( keypoints_test_CPU[ good_matches[k].trainIdx ].pt );
scene.push_back( (keypoints_tmp_CPU)[ good_matches[k].queryIdx ].pt );