How to maintain objects between app sessions? - ios

I am currently using singleton instances to access and maintain various NSObject in the app.
For instance, I have :
VariableStores, that maintain several objects such as currentUser (custom NSObject), lastLocation (CLLocation), etc.
TaskManager, containing a NSMutableArray of NSOperations that have failed in order to be re-executed later (such as Instagram with failed upload).
If I kill the app, singleton instances are destroyed and :
- some data must be retrieved from the server side (for instance, the currentUser) which increase the length duration
- some data cant be retrieved from the server-side, such as the NSOperation in the TaskManager (as they are only managed locally)
Thus, I would like to go further and maintain that kind of objects even if the app is totally killed.
What should I consider as a good practice? Serializing object into NSUserDefaults and deserialize ? Is there other best practices?
In case of serializion, serializing objects in -applicationWillTerminate delegate and deserializing them in appropriate -init methods of singleton (that are instantiated in the appDidFinishLaunching) can be considered as acceptable ?

the idea of singleton pattern is just to transfer data between controllers without worrying about details ..
what you need to do is a persisting data of your App ..
you can use core data if you see that the data that you need to store is a little big for plists.. or you can use sqlite but that will give you a little pain for writing a lot of sql statements..
or you can use regular plist or nsUserDefaults (i don't like that option) but it's a little slow if the data is too much ..
you can save this data when app go to background or terminated..

Related

How to create snapshot of CoreData state?

Background story
I am developing a big iOS app. This app works under specific assumptions. The main of them is that app should work offline with internal storage which is a snapshot of last synchronized state of data saved on server. I decided to use CoreData to handle this storage. Every time app launches I check if WiFi connection is enabled and then try to synchronize storage with server. The synchronization can take about 3 minutes because of size of data.
The synchronization process consists of several stages and in each of them I:
fetch some data from the server (XML)
deserialize it
save it in Core Data
Problem
Synchronization process can be interrupted for several reasons (internet connection, server down, user leaving application, etc). This may cause data to be out-of-sync.
Let's assume that synchronization process has 5 stages and it breaks after third. It results in 3/5 of data being updated in internal storage and the rest being out of sync. I can't allow it because data are strongly connected to each other (business logic).
Goal
I don't know if it is possible but I'm thinking about implementing one solution. On start of synchronization process I would like to create snapshot (some kind of copy) of current state of Core Date and during synchronization process work on it. When synchronization process completes with success then this snapshot could overwrite current CoreData state. When synchronization interrupts then snapshot can be simply aborted. My internal storage will be secured.
Questions
How to create CoreData snapshot?
How to work with CoreData snapshot?
How to overwrite CoreDate state with snapshot?
Thanks in advice for any help. Code examples, if it is possible, will be appreciated.
EDIT 1
The size of data is too big to handle it with multiple CoreData's contexts. During synchronization I am saving current context multiple times to cleanup memory. If I do not do it, the application will crash with memory error.
I think it should be resolved with multiple NSPersistentStoreCoordinators using for example this method: link. Unfortunately, I don't know how to implement this.
You should do exactly what you said. Just create class (lets call it SyncBuffer) with methods "load", "sync" and "save".
The "load" method should read all entities from CoreData and store it in class variables.
The "sync" method should make all the synchronisation using class variables.
Finally the "save" method should save all values from class variables to CoreData - here you can even remove all data from CoreData and save brand new values from SyncBuffer.
A CoreData stack is composed at its core by three components: A context (NSManagedObjectContext) a model (NSManagedObjectModel) and the store coordinator (NSPersistentStoreCoordinator/NSPersistentStore).
What you want is to have two different contexts, that shares the same model but use two different stores. The store itself will be of the same type (i.e. an SQLite db) but use a different source file.
At this page you can see some documentation about the stack:
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CoreData/InitializingtheCoreDataStack.html#//apple_ref/doc/uid/TP40001075-CH4-SW1
The NSPersistentContainer is a convenience class to initialise the CoreData stack.
Take the example of the initialisation of a NSPersistentContainer from the link: you can have the exact same code to initialise it, twice, but with the only difference that the two NSPersistentContainer use a different .sqlite file: i.e. you can have two properties in your app delegate called managedObjectContextForUI and managedObjectContextForSyncing that loads different .sqlite files. Then in your program you can use the context from one store to get current data to show to the user and you can use the context that use the other store with a different .sqlite if you are doing sync operations. When the sync operations are finally done you can eventually swap the two files and after clearing and reloading the NSPersistentContainer (this might be tricky, because you will want to invalidate and reload all managed objects: you are switching to an entirely new context) you can then show the newly synced data to the user and start syncing again on a new .sqlite file.
The way I understand the problem is that you wish to be able download a large "object graph". It is however so large that it cannot be loaded at once in memory, so you would have to break it in chunks and then merge it locally into to Core data.
If that is the case, I think that's not trivial. I am not sure I can think of direct solution without understanding the object relations and even then it may be really overwhelming.
An overly simplistic solution may be to generate the sqlite file on the backend then download it in chunks; it seems ugly, but it serves to separate the business logic from the sync, i.e. the sqlite file becomes the transport layer. So, I think the essence to the solution would be to find a way to physically represent the data you are syncing in a format that allows for splitting it in chunks and that can afterwards be merged into a sqlite file (if you insist on using Core data).
Please also note that as far as I know Amazon (https://aws.amazon.com/appsync/) and Realm (https://realm.io/blog/introducing-realm-mobile-platform/) provide background sync of you local database, but those are paid services and you would have to be careful not be locked in (should not depend on their libs in your model layer, instead have a translation layer).

Singletons vs Core Data

This question is not about the technical problem, but rather the approach.
I know two more or less common approaches to store the data received from the server in your app:
1) Using managers, data holders etc to store the data. They are most often some kind of singleton and are used to store the models received from the server. (E.g. - the array of the posts/places/users) Singletons are needed to be able to access the data from any screen. I think the majority of apps uses this approach.
2) Using Core Data (or maybe Realm) as in-memory storage. This approach avoids having singletons, but, I guess, it is a bit more complex (and crash risky) to maintain and support.
How do you store data and why?
P.S. Any answers would help. But big "thank you" for detailed ones, with reasons.
The reason people opt to use Core Data/Relam/Shark or any other iOS ORM is mainly for the purpose of persisting data between runs of the app.
Currently there are two ways of doing this, for single values and very small (not that I encourage it) objects you can use the UserDefaults to persist between app launches. For a approach closer to a database, infact in the case of Core Data and SharkORM, they are built on top of SQLite, you need to use an ORM.
Using a manager to store an array of a data models will only persist said models for the lifetime of the app. For example when the user force quits the app, restarts their device or in some circumstances when iOS terminates your app, all that data will be lost permanently. This is because it is stored in RAM which is volatile memory, rather than in a database on the disk itself.
Using a database layer even if you don't specifically require persistence between launches can have its advantages though; for instance SharkORM allows you to execute raw SQL queries on your objects if you don't want to use the built in powerful query builder. This can be useful to quickly pull the model you are interested in rather than iterating through a local array.
In reply to your question, how do I store data?
Well, I use a combination of all three. Say for instance I called to an API for some data which I wanted to display there and then to the user, I would use a manager instance with an array to hold the data model.
But on the flipside if I wanted to store that data for later or if I needed to execute a complex query on it, I would store it on disk using Shark.
If however I just wanted to store whether or not the user had seen my on boarding flow I would just persist a boolean value into UserDefaults.
I hope this is detailed enough for you.
CoreData isn't strictly "in-memory". You can load objects into your data model and save them into their context, then they might actually be on disk and out of main memory, and they can easily be brought back via fetch requests.
Singletons, on the other hand, do typically stay in main memory all the time until the user terminates the app. If you have larger objects that you are storing in some data structure (e.g. full resolution images when all you really needed was a thumbnail), this can be quite a resource hog.

CoreData in-memory setup with MagicalRecord 3

Hello I'm using CoreData + MagicalRecord 3 to manage the data in my app. Until then everything was working fine, but then I realize in production than my app is freezing like hell !
So I started to investigate knowing about the fact that to not stuck the UI, it's better to have a main context and a background context and save stuff in background etc...
Nevertheless I have to question due to my setup. I use CoreData in-memory store system (for the best performance) and I don't care about storing the data on disk of my app, I'm fine with a volatile model that will be destroyed when the app is killed or in background for too long. I just want to be able to find my data from any view controller and without coupling.
So I have few questions :
1) If I would use 1 unique context, what would happen if I NEVER save it to the memory store ? For instance if I MR_createEntity then I retrieve this entity from the context and update it, is it updated everywhere or do I have to save it so it can be updated ? In other term was is the interest of saving for in-memory where you don't want to persist the data forever ?
2) If I use 1 unique context that I declare being background, if I display my screen before my data is finished to saved, the screen won't be able to find and display my data right ? Unless I use NSFetchResultController right ?
1) you want to save your data even with an in memory store for a couple of reasons. First, so that you can use core data properly in the case where you might change your mind and persist your data. Second, you'll likely want to access and process some data on different threads/queues. In that case, you'll have to use Core Data's data safety mechanisms for threads/queues. The store is the lowest level at which Core Data will sync data across threads (the old way). This may be less important if you use nested contexts to sync your data (the new way). But even with nested contexts, you'll need call save in order for your changes to merge across contexts. Core Data doesn't really like it when you save to a nil store.
2) You can make and use your own context for displaying data. NSFetchedResultsController does a lot of the leg work in listening for the correct notifications and making sure you're getting very specific updates for the data you asked for in the first place. NSFRC is not always necessary, but will certainly be the easiest way to start.

IOS Core Data - Saving Server Data

I'm new to Core Data, and currently using it to save API server response in an IOS App, using AFNetworking : I have a couple models like Conversations and Messages, I want to allow users to view theirs even if there is no Network.
I was previously using NSObjects and parsing JSON, which was working well.
Does it sound strange to have 2 Objects For the same class : the current NSObject and the equivalent CoreData Managed Object?
With both NSObjects and NSManagedObjects for the same class
With only NSManagedObjects
In the case 2), when using only NSManagedObjects, I have to wait to create and fetch the NSManagedObjects whereas in the case of using both I can do the core data save in the background and don't wait for that save to display it to user.
Any recommendations on which way to go, or any better alternative I did not consider?
NSManagedObject is a subclass of NSObject, so solution 2 is the only way to go.
As for saving, this does not necessarily take much time. Also, if you use a NSFetchedResultsController to display the items, even in-memory changes (before saving the context) will be caught by its delegate methods

Incremental Saving

I have an app with a lot of data (including NSMutableArrays, NSNumbers, various custom classes) that uses NSCoding protocol presently. However, I would like to implement an incremental saving system, to save time during the "saving process". The loading time is not important.
Is there any existing container that checks its members for "dirty" and only updates those values when writing to file; or better yet, a protocol that can be implemented to do the same; or any other simple, available way of doing this?
For large amount of data its better to change data model to Core Data. Otherwise, you may want to save changes after specific events, or, bad solution is to use NSTimer, to save all data every time you want to.

Resources