License Plate Image Matching - opencv

I would like to match two license plate images, sample images given below
Here these two license plate belong to same vehicle, hence they should give match.
There may be zoom and slight rotation in these images, also only a part of the original may be visible as given in the example.
If the License plate belong to different vehicle algorithm should say it is different.
Which is best algorithm for doing this ?

I would suggest you use openCV functions from Features2D Framework, and Homography method to handle the scaling and rotation problem. Specifically, in Features2D, there are classes that may be helpful for your to detect the letter, extract them, and match your two templates after extraction.

Frankly this is a non-trivial question.
Just to list some obvious options:
Implement one of the numerous character recognition softwares, and
get the string of characters, and then do a search for the substring
in another string.
For images with almost no difference in zoom
level, Use edge detection filters, like canny edge detection, to
enhance the image, then use ICP (Iterative Closest Point), letting
each edge pixel provide a vector to the closest edge pixel in the
other image, with a similar value. this typically aligns images if
they are similar enough. The final score tells you how similar they
are.
For very large zoom levels, use multiple rotation and zoom
hypothesis, and for each, scale the images and do cross correlation
of the two images. select the hypothesis, that provides the
coordinates with the best correlation, and use the point of
correlation, as the x and y offset. The value of the correlation
tells you how good a fit you have..
many other smarter algorithms have been produced for image fitting. However, you have much larger problems.
The two example images you provide does not show the entire licenseplate, so you will not be able to say anything better than, "the probabillity of a match is larger than zero", as the number of visible characters increase, so does the probabillity of a match.
you could argue that small damages to a license plate also increases the probabillity, in that case cross correlation or similar method is needed to evaluate the probabillity of a match.

Related

Evaluating the confidence of an image registration process

Background:
Assuming there are two shots for the same scene from two different perspective. Applying a registration algorithm on them will result in Homography Matrix that represents the relation between them. By warping one of them using this Homography Matrix will (theoretically) result in two identical images (if the non-shared area is ignored).
Since no perfection is exist, the two images may not be absolutely identical, we may find some differences between them and this differences can be shown obviously while subtracting them.
Example:
Furthermore, the lighting condition may results in huge difference while subtracting.
Problem:
I am looking for a metric that I can evaluate the accuracy of the registration process. This metric should be:
Normalized: 0->1 measurement which does not relate to the image type (natural scene, text, human...). For example, if two totally different registration process on totally different pair of photos have the same confidence, let us say 0.5, this means that the same good (or bad) registeration happened. This should applied even one of the pair is for very details-reach photos and the other of white background with "Hello" in black written.
Distinguishing between miss-registration accuracy and different lighting conditions: Although there is many way to eliminate this difference and make the two images look approximately the same, I am looking of measurement that does not count them rather than fixing them (performance issue).
One of the first thing that came in mind is to sum the absolute differences of the two images. However, this will result in a number that represent the error. This number has no meaning when you want to compare it to another registration process because another images with better registration but more details may give a bigger error rather than a smaller one.
Sorry for the long post. I am glad to provide any further information and collaborating in finding the solution.
P.S. Using OpenCV is acceptable and preferable.
You can always use invariant (lighting/scale/rotation) features in both images. For example SIFT features.
When you match these using typical ratio (between nearest and next nearest), you'll have a large set of matches. You can calculate the homography using your method, or using RANSAC on these matches.
In any case, for any homography candidate, you can calculate the number of feature matches (out of all), which agree with the model.
The number divided by the total matches number gives you a metric of 0-1 as to the quality of the model.
If you use RANSAC using the matches to calculate the homography, the quality metric is already built in.
This problem is given two images decide how misaligned they are.
Thats why we did the registration. The registration approach cannot answer itself how bad a job it did becasue if it knew it it would have done it.
Only in the absolute correct case do we know the result: 0
You want a deterministic answer? you add deterministic input.
a red square in a given fixed position which can be measured how rotated - translated-scaled it is. In the conditions of lab this can be achieved.

Image similarity of apartment photos

I want to design an algorithm that would find matches in images of the same apartment, when put up by different real estate agents.
Photos are relatively taken in similar time so the interior of the rooms should not change that much but of course every guys takes different pictures from different angles, etc.
(TLDR; a apartment goes for sale, and different real estate guys come in and make their own pictures, and I want to know if the given pictures from various guys are of the same place)
I know that image processing and recognition algorithm selections highly depend on the use case, so could you point me in correct direction given my use-case?
http://reality.bazos.sk/inzerat/56232813/Prenajom-1-izb-bytu-v-sirsom-centre.php
http://reality.bazos.sk/inzerat/56371292/-PRENAJOM-krasny-1i-byt-rekonstr-Kupeckeho-Ruzinov-BA-II.php
You can actually use Clarifai's Custom Training API endpoint, fairly simple and straightforward. All you would have to do is train the initial image and then compare the second to it. If the probability is high, it is likely the same apartment. For example:
In javascript, to declare a positive it is:
clarifai.positive('http://example.com/apartment1.jpg', 'firstapartment', callback);
And a negative is:
clarifai.negative('http://example.com/notapartment1.jpg', 'firstapartment', callback);
You don't necessarily have to do a negative, but it could only help. Then, when you are comparing images to the first aparment, you do:
clarifai.predict('http://example.com/someotherapartment.jpg', 'firstapartment', callback);
This will give you a probability regarding the likeness of the photo to what you've trained ('firstapartment'). This API is basically doing machine learning without the hassle of the actual machine. Clarifai's API also has a tagging input that is extremely accurate with some basic tags. The API is free for a certain number of calls/month. Definitely worth it to check out for this case.
As user Shaked mentioned in a comment, this is a difficult problem. Even if you knew the position and orientation of each camera in space, and also the characteristics of each camera, it wouldn't be a trivial problem to match the images.
A "bag of words" (BoW) approach may be of use here. Rather than try to identify specific objects and/or deduce the original 3D scene, you determine what "feature descriptors" can distinguish objects from one another in your image sets.
https://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision
Imagine you could describe the two images by the relative locations of textures and colors:
horizontal-ish line segments at far left
red blob near center left
green clumpy thing at bottom left
bright round object near top left
...
then for a reasonably constrained set of images (e.g. photos just within a certain zip code), you may be able to yield a good match between the two images above.
The Wikipedia article on BoW may look a bit daunting, but I think if you hunt around you'll find an article that describes "bag of words" for image processing clearly. I've seen a very good demo of a BoW approach used to identify objects such as boats and delivery vans in arbitrary video streams, and it worked impressively well. I wish I had a copy of the presentation to pass along.
If you don't suspect the image to change much, you could try the standard first step of any standard structure-from-motion algorithm to establish a notion of similarity between a pair of images. Any pair of images are similar if they contain a number of matching image features larger than a threshold which satisfy the geometrical constraint of the scene as well. For a general scene, that geometrical constraint is given by a Fundamental Matrix F computed using a subset of matching features.
Here are the steps. I have inserted the opencv method for each step, but you could write your methods too:
Read the pair of images. Use img = cv2.imread(filename).
Use SIFT/SURF to detect image features/descriptors in both images.
sift = cv2.xfeatures2d.SIFT_create()
kp, des = sift.detectAndCompute(img,None)
Match features using the descriptors.
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1,des2)
Use RANSAC to compute funamental matrix.
cv2.findFundamentalMatrix(pts1, pts2, cv2.FM_RANSAC, 3, 0.99, mask)
mask contains all the inliers. Simply count them to determine if the number of matches satisfying geometrical constraint is large enough.
CAUTION: In case of a planar scene, we use homography instead of a fundamental matrix and the steps described above work out pretty nicely because homography takes a point to a corresponding point in the other image. However, Fundamental matrix takes a point to the corresponding epipolar line in the other image, which makes the entire process a bit less stable. So I would recommend trying these steps a few more times with a little bit of jitter to the feature locations and collating the evidence over more than one trial to make the decision. You can also use more advanced steps to introduce robustness to this process but only if the steps described above don't yield the results you need.

Comparing similar images as photographs -- detecting difference, image diff

The situation is kind of unique from anything I have been able to find asked already, and is as follows: If I took a photo of two similar images, I'd like to be able to highlight the differing features in the two images. For example the following two halves of a children's spot the difference game:
The differences in the images will be bits missing/added and/or colour change, and the type of differences which would be easily detectable from the original image files by doing nothing cleverer than a pixel-by-pixel comparison. However the fact that they're subject to the fluctuations of light and imprecision of photography, I'll need a far more lenient/clever algorithm.
As you can see, the images won't necessarily line up perfectly if overlaid.
This question is tagged language-agnostic as I expect answers that point me towards relevant algorithms, however I'd also be interested in current implementations if they exist, particularly in Java, Ruby, or C.
The following approach should work. All of these functionalities are available in OpenCV. Take a look at this example for computing homographies.
Detect keypoints in the two images using a corner detector.
Extract descriptors (SIFT/SURF) for the keypoints.
Match the keypoints and compute a homography using RANSAC, that aligns the second image to the first.
Apply the homography to the second image, so that it is aligned with the first.
Now simply compute the pixel-wise difference between the two images, and the difference image will highlight everything that has changed from the first to the second.
My general approach would be to use an optical flow to align both images and perform a pixel by pixel comparison once they are aligned.
However, for the specifics, standard optical flows (OpenCV etc.) are likely to fail if the two images differ significantly like in your case. If that indeed fails, there are recent optical flow techniques that are supposed to work even if the images are drastically different. For instance, you might want to look at the paper about SIFT flows by Ce Liu et al that addresses this problem with sparse correspondences.

obtaining 2d-3d point correspondences for pnp or posit

I am trying to estimate the pose and position of a satellite given an image of it. I have a 3D model of the satellite. Using either PnP solvers or POSIT works great when I pick out the point correspondences myself, however I need to to find a method to match the points up automatically. Using a corner detector (best one I found so far is based on the contour) I can find all the relevant points in the image in addition a few spurious points. However I need to match a given point in the image to the correct point in the 3D model. The articles I have read on the subject always seem to assume that we have found the point pairs without going into details about how to do so.
Is there any approach usually taken that can determine these correspondences based on some invariant features? Or should i resort to a different method not based on corner points?
You can have a look at the SoftPOSIT algorithm, which determines 3D-2D correspondences and then executes POSIT algorithm. As far as I know Matlab code is available for SoftPOSIT.
ou have to do PnP with RANSAC, see openCV code solvePnPRansac(). This method can tolerate a high percent of mismatches so you don't need to be precise with all your matches but just have a certain percent of correct ones (even as low as 30%). Of course the min number of right correspondences is 4.
Speaking of invariant features - if the amount of rotation between neighbouring frame is small you don't need to use invariant features. Even a small patch of with grey intensities would suffice to find a match. The only problem is that you have to update your descriptor or even choose a different feature point on your model depending on the model rotation. The latter may be hard to do since you have to know 3D coordinate of every feature.

Shape context matching in OpenCV

Have OpenCV implementation of shape context matching? I've found only matchShapes() function which do not work for me. I want to get from shape context matching set of corresponding features. Is it good idea to compare and find rotation and displacement of detected contour on two different images.
Also some example code will be very helpfull for me.
I want to detect for example pink square, and in the second case pen. Other examples could be squares with some holes, stars etc.
The basic steps of Image Processing is
Image Acquisition > Preprocessing > Segmentation > Representation > Recognition
And what you are asking for seems to lie within the representation part os this general algorithm. You want some features that descripes the objects you are interested in, right? Before sharing what I've done for simple hand-gesture recognition, I would like you to consider what you actually need. A lot of times simplicity will make it a lot easier. Consider a fixed color on your objects, consider background subtraction (these two main ties to preprocessing and segmentation). As for representation, what features are you interested in? and can you exclude the need of some of these features.
My project group and I have taken a simple approach to preprocessing and segmentation, choosing a green glove for our hand. Here's and example of the glove, camera and detection on the screen:
We have used a threshold on defects, and specified it to find defects from fingers, and we have calculated the ratio of a rotated rectangular boundingbox, to see how quadratic our blod is. With only four different hand gestures chosen, we are able to distinguish these with only these two features.
The functions we have used, and the measurements are all available in the documentation on structural analysis for OpenCV, and for acces of values in vectors (which we've used a lot), can be found in the documentation for vectors in c++
I hope you can use the train of thought put into this; if you want more specific info I'll be happy to comment, Enjoy.

Resources