Term not reduced as expected - agda

The following lemma should be trivial: Combining the plus sign and a natural is the same that using the plus constructor on this natural.
module sign where
open import Data.Nat
open import Data.Integer using (_◃_; +_)
open import Data.Sign renaming (+ to s+)
open import Relation.Binary.PropositionalEquality
lemma : ∀ y → s+ ◃ y ≡ + y
lemma y = refl
But lemma fails to typecheck with:
s+ ◃ y != + y of type Data.Integer.ℤ
when checking that the expression refl has type s+ ◃ y ≡ + y
I'm using lib-0.7 and according to this link, ◃ is defined as:
_◃_ : Sign → ℕ → ℤ
_ ◃ ℕ.zero = + ℕ.zero
Sign.+ ◃ n = + n
Sign.- ◃ ℕ.suc n = -[1+ n ]
So I expected that s+ ◃ y, following the second pattern rule, evaluate to + y and typechecking to succeed.
What is amiss?

The problem is that the first equation can also be used for s+ ◃ y. Only after you know that y is not zero, the second equation applies.
The solution is simple:
lemma : ∀ y → s+ ◃ y ≡ + y
lemma zero = refl
lemma (suc _) = refl

Related

Proof about a function that uses rewrite: a "vertical bars in goals" question

I have a function that uses rewrite to satisfy the Agda type checker. I thought that I had a reasonably good grasp of how to deal with the resulting "vertical bars" in proofs about such functions. And yet, I fail completely at dealing with these bars in my seemingly simple case.
Here are the imports and my function, step. The rewrites make Agda see that n is equal to n + 0 and that suc (acc + n) is equal to acc + suc n, respectively.
module Repro where
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Data.Nat
open import Data.Nat.DivMod
open import Data.Nat.DivMod.Core
open import Data.Nat.Properties
open import Agda.Builtin.Nat using () renaming (mod-helper to modₕ)
step : (acc d n : ℕ) → modₕ acc (acc + n) d n ≤ acc + n
step zero d n rewrite P.sym (+-identityʳ n) = a[modₕ]n<n n (suc d) 0
step (suc acc) d n rewrite P.sym (+-suc acc n) = a[modₕ]n<n acc (suc d) (suc n)
Now for the proof, which pattern matches on acc, just like the function. Here's the zero case:
step-ok : ∀ (acc d n : ℕ) → step acc d n ≡ a[modₕ]n<n acc d n
step-ok zero d n with n | P.sym (+-identityʳ n)
step-ok zero d n | .(n + 0) | P.refl = ?
At this point, Agda tells me I'm not sure if there should be a case for the constructor P.refl, because I get stuck when trying to solve the following unification problems (inferred index ≟ expected index): w ≟ w + 0 [...]
I am also stuck in the second case, the suc acc case, albeit in a different way:
step-ok (suc acc) d n with suc (acc + n) | P.sym (+-suc acc n)
step-ok (suc acc) d n | .(acc + suc n) | P.refl = ?
Here, Agda says suc (acc + n) != w of type ℕ when checking that the type [...] of the generated with function is well-formed
Update after Sassa NF's response
I followed Sassa NF's advice and reformulated my function with P.subst instead of rewrite. I.e., I changed my right-hand side from being about n + 0 to being about n, instead of conversely changing the goal from being about n to being about n + 0:
step′ : (acc d n : ℕ) → modₕ acc (acc + n) d n ≤ acc + n
step′ zero d n = P.subst (λ # → modₕ 0 # d # ≤ #) (+-identityʳ n) (a[modₕ]n<n n (suc d) 0)
step′ (suc acc) d n = P.subst (λ # → modₕ (suc acc) # d n ≤ #) (+-suc acc n) (a[modₕ]n<n acc (suc d) (suc n))
During the proof, the P.subst in the function definition needs to be eliminated, which can be done with a with construct:
step-ok′ : ∀ (acc d n : ℕ) → step′ acc d n ≡ a[modₕ]n<n acc d n
step-ok′ zero d n with n + 0 | +-identityʳ n
... | .n | P.refl = P.refl
step-ok′ (suc acc) d n with acc + suc n | +-suc acc n
... | .(suc (acc + n)) | P.refl = P.refl
So, yay! I just finished my very first Agda proof involving a with.
Some progress on the original problem
My guess would be that my first issue is a unification issue during dependent pattern matching: there isn't any substitution that makes n identical to n + 0. More generally, in situations where one thing is a strict subterm of the other thing, I suppose that we may run into unification trouble. So, maybe using with to match n with n + 0 was asking for problems.
My second issue seems to be what the Agda language reference calls an ill-typed with-abstraction. According to the reference, this "happens when you abstract over a term that appears in the type of a subterm of the goal or argument types." The culprit seems to be the type of the goal's subterm a[modₕ]n<n (suc acc) d n, which is modₕ [...] ≤ (suc acc) + n, which contains the subterm I abstract over, (suc acc) + n.
It looks like this is usually resolved by additionally abstracting over the part of the goal that has the offending type. And, indeed, the following makes the error message go away:
step-ok (suc acc) d n with suc (acc + n) | P.sym (+-suc acc n) | a[modₕ]n<n (suc acc) d n
... | .(acc + suc n) | P.refl | rhs = {!!}
So far so good. Let's now introduce P.inspect to capture the rhs substitution:
step-ok (suc acc) d n with suc (acc + n) | P.sym (+-suc acc n) | a[modₕ]n<n (suc acc) d n | P.inspect (a[modₕ]n<n (suc acc) d) n
... | .(acc + suc n) | P.refl | rhs | P.[ rhs-eq ] = {!!}
Unfortunately, this leads to something like the original error: w != suc (acc + n) of type ℕ when checking that the type [...] of the generated with function is well-formed
One day later
Of course I'd run into the same ill-typed with-abstraction again! After all, the whole point of P.inspect is to preserve a[modₕ]n<n (suc acc) d n, so that it can construct the term a[modₕ]n<n (suc acc) d n ≡ rhs. However, preserved a[modₕ]n<n (suc acc) d n of course still has its preserved original type, modₕ [...] ≤ (suc acc) + n, whereas rhs has the modified type modₕ [...] ≤ acc + suc n. That's what's causing trouble now.
I guess one solution would be to use P.subst to change the type of the term we inspect. And, indeed, the following works, even though it is hilariously convoluted:
step-ok (suc acc) d n with suc (acc + n) | P.sym (+-suc acc n) | a[modₕ]n<n (suc acc) d n | P.inspect (λ n → P.subst (λ # → modₕ (suc acc) # d n ≤ #) (P.sym (+-suc acc n)) (a[modₕ]n<n (suc acc) d n)) n
... | .(acc + suc n) | P.refl | rhs | P.[ rhs-eq ] rewrite +-suc acc n = rhs-eq
So, yay again! I managed to fix my original second issue - basically by using P.subst in the proof instead of in the function definition. It seems, though, that using P.subst in the function definition as per Sassa NF's guidance is preferable, as it leads to much more concise code.
The unification issue is still a little mysterious to me, but on the positive side, I unexpectedly learned about the benefits of irrelevance on top of everything.
I'm accepting Sassa NF's response, as it put me on the right track towards a solution.
Your use of P.refl indicates some misunderstanding about the role of _≡_.
There is no magic in that type. It is just a dependent type with a single constructor. Proving that some x ≡ y resolves to P.refl does not tell Agda anything new about x and y: it only tells Agda that you managed to produce a witness of the type _≡_. This is the reason it cannot tell n and .(n + 0) are the same thing, or that suc (acc + n) is the same as .(acc + suc n). So both of the errors you see are really the same.
Now, what rewrite is for.
You cannot define C x ≡ C y for dependent type C _. C x and C y are different types. Equality is defined only for elements of the same type, so there is no way to even express the idea that an element of type C x is comparable to an element of type C y.
There is, however, an axiom of induction, which allows to produce elements of type C y, if you have an element of type C x and an element of type x ≡ y. Note there is no magic in the type _≡_ - that is, you can define your own type, and construct such a function, and Agda will be satisfied:
induction : {A : Set} {C : (x y : A) -> (x ≡ y) -> Set} (x y : A) (p : x ≡ y) ((x : A) -> C x x refl) -> C x y p
induction x .x refl f = f x
Or a simplified version that follows from the induction axiom:
transport : {A : Set} {C : A -> Set} (x y : A) (x ≡ y) (C x) -> C y
transport x .x refl cx = cx
What this means in practice, is that you get a proof for something - for example, A x ≡ A x, but then transport this proof along the equality x ≡ y to get a proof A x ≡ A y. This usually requires specifying the type explicitly, in this case {C = y -> A x ≡ A y}, and provide the x, the y and the C x. As such, it is a very cumbersome procedure, although the learners will benefit from doing these steps.
rewrite then is a syntactic mechanism that rewrites the types of the terms known before the rewrite, so that such transport is not needed after that. Because it is syntactic, it does interpret the type _≡_ in a special way (so if you define your own type, you need to tell Agda you are using a different type as equality). Rewriting types is not "telling" Agda that some types are equal. It just literally replaces occurrences of x in type signatures with y, so now you only need to construct things with y and refl.
Having said all that, you can see why it works for step. There rewrite P.sym ... literally replaced all occurrences of n with n + 0, including the return type of the function, so now it is modₕ acc (acc + (n + 0)) d (n + 0) ≤ acc + (n + 0). Then constructing a value of that type just works.
Then step-ok didn't work, because you only pattern-matched values. There is nothing to tell that n and (n + 0) are the same thing. But rewrite will. Or you could use a function like this transport.

Why does `sym` need to be used in this case when using `rewriting`?

Given the Peano definition of natural numbers:
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc (m + n)
We can prove by different methods the property ∀ (m : ℕ) → zero + m ≡ m + zero.
For example:
comm-+₀ : ∀ (m : ℕ) → zero + m ≡ m + zero
comm-+₀ zero = refl
comm-+₀ (suc n) =
begin
zero + suc n
≡⟨⟩
zero + suc (zero + n)
≡⟨⟩
suc (zero + n)
≡⟨ cong suc (comm-+₀ n) ⟩
suc (n + zero)
≡⟨⟩
suc n + zero
∎
And more compactly:
comm-+₀ : ∀ (m : ℕ) → zero + m ≡ m + zero
comm-+₀ zero = refl
comm-+₀ (suc n) = cong suc (comm-+₀ n)
If we want, we can even use rewrite and forgo cong:
comm-+₀ : ∀ (m : ℕ) → zero + m ≡ m + zero
comm-+₀ zero = refl
comm-+₀ (suc n) rewrite comm-+₀ n = refl
But wait! That doesn't work. Agda will tell us that the expression is wrong because it can't prove the following:
suc (n + 0) ≡ suc (n + 0 + 0)
If we present Agda the symmetrical rewrite of the property, sym (comm-+₀ n), it will type check without errors.
So, my question is: why do we need sym in this case? The proof worked perfectly fine without it with the other strategies. Does rewrite work on both sides simultaneously and not just the left side?
In every cases, the goal when m is of the form suc n is:
suc n ≡ suc (n + 0)
To solve this goal by providing a correctly typed term, the right way is, as you noticed:
cong suc (comm-+₀ n)
However, when using rewrite with an equality a ≡ b you modify directly the goal by substituting all occurences of a by b In your case, using rewrite on the quantity comm-+₀ n whose type is n ≡ n + 0 leads to the replacing of every occurence of n by n + 0, thus transforming the goal from
suc n ≡ suc (n + 0)
to
suc (n + 0) ≡ suc (n + 0 + 0)
which is not what you want to do. Since rewriting replaces all occurences of the left side by the right side, reversing the equality using sym will instead replace the only occurence of n + 0 by n thus transforming the goal from
suc n ≡ suc (n + 0)
to
suc n ≡ suc n
which is your expected behaviour and let you conclude using refl direcly. This explains why you need to use sym.
To summarize :
rewrite interacts directly with the type of the goal.
rewrite rewrites from left to right.
rewrite rewrites all occurences it finds in the type of the goal.
More on rewrite can be found here:
https://agda.readthedocs.io/en/v2.6.0.1/language/with-abstraction.html#with-rewrite

Agda error when checking the inferred type

I'm trying to show that the sum of two odd numbers is even.
What is wrong with the last line?
data odd : ℕ → Set
data even : ℕ → Set
data even where
ezero :
-------
even zero
esuc : ∀ {n : ℕ}
→ odd n
------
→ even (suc n)
data odd where
osuc : ∀ { n : ℕ }
→ even n
------
→ odd (suc n)
e+e≡e : ∀ {m n : ℕ}
→ even m
→ even n
----
→ even (m + n)
o+e≡o : ∀ {m n : ℕ}
→ odd m
→ even n
------
→ odd (m + n)
e+e≡e ezero en = en
e+e≡e (esuc om) en = esuc (o+e≡o om en)
o+e≡o (osuc em) en = osuc (e+e≡e em en)
o+o≡e : ∀ {m n : ℕ}
→ odd m
→ odd n
------
→ even (m + n)
o+o≡e (osuc em) on = esuc (o+e≡o on em)
I'm getting this error:
➊  - 660 Experiment.agda  Agda   ∏  unix | 50: 0  Bottom
/Users/max/dev/plfa.github.io/src/plfa/Experiment.agda:52,28-39
n != n₁ of type ℕ
when checking that the inferred type of an application
odd (n + _n_31)
matches the expected type
odd (n₁ + n)
But the types seem fine to me. For example, if I replace the right side with ? and check the goals, Agda shows:
Goal: even (suc (n + n₁))
————————————————————————————————————————————————————————————
on : odd n₁
em : even n
n₁ : ℕ (not in scope)
n : ℕ (not in scope
So I'm passing evidence on that n is odd and em that m is even. And passing these to o+e≡e, which expects arguments of exactly those types. So where did I go wrong?
And in general, how can I read Agda's error messages? Are the subscripts after variable names meaningful?
It's telling you that em is not equal to on: you want a proof of odd (m + n), but you get odd (n + m) - Agda can't see addition is commutative. You should swap the arguments.
o+o≡e on (osuc em) = esuc (o+e≡o on em)
This produces a different error. That error tells you that Agda is unable to work out that suc (m + n) is equal to m + suc n, which means you need to introduce a lemma that establishes the equality. Then recall transport (a function that transports a value of a dependent type B x along equality x ≡ y to a value of a different dependent type B y), and that will give you a way to obtain a value of the needed type from the value that esuc (o+e≡o on em) constructs.
Working solution with zero imports:
data _==_ {A : Set} (x : A) : A -> Set where
refl : x == x
-- congruence
cong : forall {A B : Set} {x y : A} -> (f : A -> B) -> (x == y) -> (f x) == (f y)
cong f refl = refl -- note these refls are of different types: of x == y on the left, and of (f x) == (f y) on the right
-- transport: given two values are "equal", transport one dependent value along the equality path into a different dependent value
transport : forall {A : Set} {B : A -> Set} {x y : A} -> x == y -> B x -> B y
transport refl bx = bx -- proof relies on the circumstance that the only way to construct x == y is refl, so (B x) is (B y)
-- then induction at the heart of Agda can work out that this must be valid for any x == y
-- commutativity of _==_
comm : forall {A : Set} {x y : A} -> x == y -> y == x
comm refl = refl
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_+_ : ∀ (m n : Nat) -> Nat
zero + n = n
(suc m) + n = suc (m + n)
-- Proving the necessary commutativity of suc.
-- Agda can see things like "(suc m) + n == suc (m + n)" by definition
-- but other equalities need proving, and then you can transport
-- the values from one type to another
n+1≡1+n : forall (m n : Nat) -> (m + (suc n)) == (suc (m + n))
n+1≡1+n zero n = refl
n+1≡1+n (suc m) n = cong suc (n+1≡1+n m n)
data odd : Nat → Set
data even : Nat → Set
data even where
ezero :
-------
even zero
esuc : ∀ {n : Nat}
→ odd n
------
→ even (suc n)
data odd where
osuc : ∀ { n : Nat }
→ even n
------
→ odd (suc n)
e+e≡e : ∀ {m n : Nat}
→ even m
→ even n
----
→ even (m + n)
o+e≡o : ∀ {m n : Nat}
→ odd m
→ even n
------
→ odd (m + n)
e+e≡e ezero en = en
e+e≡e (esuc om) en = esuc (o+e≡o om en)
o+e≡o (osuc em) en = osuc (e+e≡e em en)
-- Prove commutativity of even based on a known proof for commutativity of suc.
e-comm : forall {m n : Nat} -> even (suc (m + n)) -> even (m + (suc n))
e-comm {m} {n} esmn = transport {B = even} (comm (n+1≡1+n m n)) esmn -- transport needs hinting what B is
-- otherwise Agda cannot infer what B is based on the definition as found in this snippet
-- the error may seem a bit obscure, but you can see it is wrangling with
-- the dependent type of B:
-- Failed to solve the following constraints:
-- _74 := λ {m} {n} esmn → transport (comm (n+1≡1+n m n)) (_72 esmn)
-- [blocked on problem 166]
-- [165] (even (suc (m + n))) =< (_B_73 (suc (m + n))) : Set
-- [166] _B_73 (m + suc n) =< even (m + suc n) : Set
-- _71 := (λ {m} {n} esmn → esmn) [blocked on problem 165]
--
-- See, it is stuck trying to work out a type _B_73 such that even
-- would be a subtype of it, and a different even would be a supertype of it.
o+o≡e : ∀ {m n : Nat}
→ odd m
→ odd n
------
→ even (m + n)
o+o≡e {m} om (osuc en) = e-comm {m} (esuc (o+e≡o om en)) -- Agda had a problem working out m, so extracting it from implicits
-- Failed to solve the following constraints:
-- _81 := λ {.n} {.m} om en → e-comm (_80 om en)
-- [blocked on problem 188]
-- [188, 189] _m_74 om en + suc (_n_75 om en) = .m + suc .n : Nat
-- _79 := λ {.n} {.m} om en → esuc (o+e≡o om en)
-- [blocked on problem 185]
-- [185, 186, 187] .m + .n = _m_74 om en + _n_75 om en : Nat
--
-- See, if e-comm is not given {m} and {n}, then it is stuck working out
-- _m_74
transport joining dependent types is one of the key concepts. For example, congruence and commutativity of _==_ can be reduced to transport:
-- congruence
cong : forall {A B : Set} {x y : A} -> (f : A -> B) -> (x == y) -> (f x) == (f y)
cong {x = x} f xy = transport {B = (\y -> (f x) == (f y))} -- just making explicit that B is a type (f x) == (f _)
xy refl -- this refl is of type (f x) == (f x), which gets transported along x == y to (f x) == (f y)
-- commutativity of _==_
comm : forall {A : Set} {x y : A} -> x == y -> y == x
comm {x = x} xy = transport {B = (_== x)} xy refl -- this refl is of type x == x, which gets transported along x == y to y == x

How can I implement a `rotate` function on Vec by using `splitAt`?

Question
I'm trying to implement a rotate function on Vec, which moves every element n positions to the left, looping around. I could implement that function by using splitAt. Here is a sketch:
open import Data.Nat
open import Data.Nat.DivMod
open import Data.Fin
open import Data.Vec
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality
rotateLeft : {A : Set} -> {w : ℕ} -> {w≢0 : False (w ≟ 0)} -> ℕ -> Vec A w -> Vec A w
rotateLeft {A} {w} n vec =
let parts = splitAt (toℕ (n mod w)) {n = ?} vec
in ?
The problem is that splitAt requires two inputs, m and n, such that the size of the vector is m + n. Since the size of the vector here is w, I need to find a k such that k + toℕ (n mod w) = w. I couldn't find any standard function handy for that. What is the best way to proceed?
Some possibilities?
Perhaps it would be helpful if k = n mod w gave me a proof that k < w, that way I could try implementing a function diff : ∀ {k w} -> k < w -> ∃ (λ a : Nat) -> a + k = w. Another possibility would be to just receive a and b as inputs, rather than the bits to shift and size of the vector, but I'm not sure that is the best interface.
Update
I've implemented the following:
add-diff : (a : ℕ) -> (b : Fin (suc a)) -> toℕ b + (a ℕ-ℕ b) ≡ a
add-diff zero zero = refl
add-diff zero (suc ())
add-diff (suc a) zero = refl
add-diff (suc a) (suc b) = cong suc (aaa a b)
Now I just need a proof that ∀ {n m} -> n mod m < m.
Here's what I came up with.
open import Data.Vec
open import Data.Nat
open import Data.Nat.DivMod
open import Data.Fin hiding (_+_)
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Data.Nat.Properties using (+-comm)
difference : ∀ m (n : Fin m) → ∃ λ o → m ≡ toℕ n + o
difference zero ()
difference (suc m) zero = suc m , refl
difference (suc m) (suc n) with difference m n
difference (suc m) (suc n) | o , p1 = o , cong suc p1
rotate-help : ∀ {A : Set} {m} (n : Fin m) → Vec A m → Vec A m
rotate-help {A} {m = m} n vec with difference m n
... | o , p rewrite p with splitAt (toℕ n) vec
... | xs , ys , _ = subst (Vec A) (+-comm o (toℕ n)) (ys ++ xs)
rotate : ∀ {A : Set} {m} (n : ℕ) → Vec A m → Vec A m
rotate {m = zero} n v = v
rotate {m = suc m} n v = rotate-help (n mod suc m) v
After talking with adamse on IRC, I've came up with this:
open import Data.Fin hiding (_+_)
open import Data.Vec
open import Data.Nat
open import Data.Nat.Properties
open import Data.Nat.DivMod
open import Data.Empty
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Decidable
diff : {a : ℕ} → {b : Fin a} → ∃ λ c → toℕ b + c ≡ a
diff {zero} {()}
diff {suc a} {zero} = suc a , refl
diff {suc a} {suc b} with diff {a} {b}
... | c , prf = c , cong suc prf
rotateLeft : {A : Set} → {w : ℕ} → {w≢0 : False (w ≟ 0)} → ℕ → Vec A w → Vec A w
rotateLeft {A} {w} {w≢0} n v =
let m = _mod_ n w {w≢0}
d = diff {w} {m}
d₁ = proj₁ d
d₂ = proj₂ d
d₃ = subst (λ x → x ≡ w) (+-comm (toℕ (n mod w)) d₁) d₂
v₁ = subst (λ x → Vec A x) (sym d₂) v
sp = splitAt {A = A} (toℕ m) {n = d₁} v₁
xs = proj₁ (proj₂ sp)
ys = proj₁ sp
in subst (λ x → Vec A x) d₃ (xs ++ ys)
Which is nowhere as elegant as his implementation (partly because I'm still learning Agda's syntax so I opt to just use functions), but works. Now I should return a more refined type, I believe. (Can't thank him enough!)
For your last question to just prove k < w, since k = toℕ (n mod w), you can use bounded from Data.Fin.Properties:
bounded : ∀ {n} (i : Fin n) → toℕ i ℕ< n

Applying rules in Agda

I am new to Agda, and I think I still have a problem to think in that paradigm. Here is my question..
I have a type monoid and a type Group implemented as follows:
record Monoid : Set₁ where
constructor monoid
field Carrier : Set
_⊙_ : Carrier → Carrier → Carrier
e : Carrier
leftId : ∀ {x : Carrier} → (e ⊙ x) ≡ x
rightId : ∀ {x : Carrier} → (x ⊙ e) ≡ x
assoc : ∀ {x y z : Carrier} → (x ⊙ (y ⊙ z)) ≡ ((x ⊙ y) ⊙ z)
record Group : Set₁ where
constructor group
field m : Monoid
inv : Carrier → Carrier
inverse1 : {x y : Carrier} → x ⊙ (inv x) ≡ e
inverse2 : {x y : Carrier} → (inv x) ⊙ x ≡ e
Now, I want to proof the following lemma :
lemma1 : (x y : Carrier) → (inv x) ⊙ (x ⊙ y) ≡ y
lemma1 x y = ?
If I do it on paper, I will apply associativity then left identity.. but I do not know how to tell agda to apply these rules.. I have the problem of translating my thoughts to the Agda paradigm..
Any help is highly appreciated..
When you do the proof on the paper, applying associativity and then left identity uses ony key property of the identity relation - transitivity. That is, when you have a proof of p : x ≡ y and q : y ≡ z you can combine them into a single proof of trans p q : x ≡ z. The trans function is already part of the standard library (Relation.Binary.PropositionalEquality module), but its implementation is fairly simple anyways:
trans : {A : Set} {i j k : A} → i ≡ j → j ≡ k → i ≡ k
trans refl eq = eq
I'm using a bit different presentation of monoids and groups, but you can easily adapt the proof to your scenario.
open import Function
open import Relation.Binary.PropositionalEquality
Op₁ : Set → Set
Op₁ A = A → A
Op₂ : Set → Set
Op₂ A = A → A → A
record IsMonoid {A : Set}
(_∙_ : Op₂ A) (ε : A) : Set where
field
right-id : ∀ x → x ∙ ε ≡ x
left-id : ∀ x → ε ∙ x ≡ x
assoc : ∀ x y z → x ∙ (y ∙ z) ≡ (x ∙ y) ∙ z
record IsGroup {A : Set}
(_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set where
field
monoid : IsMonoid _∙_ ε
right-inv : ∀ x → x ∙ x ⁻¹ ≡ ε
left-inv : ∀ x → x ⁻¹ ∙ x ≡ ε
open IsMonoid monoid public
(To keep things simple, indented code is written as part of the IsGroup record). We'd like to prove that:
lemma : ∀ x y → x ⁻¹ ∙ (x ∙ y) ≡ y
lemma x y = ?
The first step is to use associativity, that is assoc (x ⁻¹) x y, this leaves us with a goal (x ⁻¹ ∙ x) ∙ y ≡ y - once we prove that, we can merge these two parts together using trans:
lemma x y =
trans (assoc (x ⁻¹) x y) ?
Now, we need to apply the right inverse property, but the types don't seem to fit. We have left-inv x : x ⁻¹ ∙ x ≡ ε and we need to somehow deal with the extra y. This is when another property of the identity comes into play.
Ordinary functions preserve identity; if we have a function f and a proof p : x ≡ y we can apply f to both x and y and the proof should be still valid, that is cong f p : f x ≡ f y. Again, implementation is already in the standard library, but here it is anyways:
cong : {A : Set} {B : Set}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
What function should we apply? Good candidate seems to be λ z → z ∙ y, which adds the missing y part. So, we have:
cong (λ z → z ∙ y) (left-inv x) : (x ⁻¹ ∙ x) ∙ y ≡ ε ∙ y
Again, we just need to prove that ε ∙ y ≡ y and we can then piece those together using trans. But this last property is easy, it's just left-id y. Putting it all together, we get:
lemma : ∀ x y → x ⁻¹ ∙ (x ∙ y) ≡ y
lemma x y =
trans (assoc (x ⁻¹) x y) $
trans (cong (λ z → z ∙ y) (left-inv x)) $
(left-id y)
Standard library also gives us some nice syntactic sugar for this:
open ≡-Reasoning
lemma′ : ∀ x y → x ⁻¹ ∙ (x ∙ y) ≡ y
lemma′ x y = begin
x ⁻¹ ∙ (x ∙ y) ≡⟨ assoc (x ⁻¹) x y ⟩
(x ⁻¹ ∙ x) ∙ y ≡⟨ cong (λ z → z ∙ y) (left-inv x) ⟩
ε ∙ y ≡⟨ left-id y ⟩
y ∎
Behind the scenes, ≡⟨ ⟩ uses precisely trans to merge those proofs. The types are optional (the proofs themselves carry enough information about them), but they are here for readability.
To get your original Group record, we can do something like:
record Group : Set₁ where
field
Carrier : Set
_∙_ : Op₂ Carrier
ε : Carrier
_⁻¹ : Op₁ Carrier
isGroup : IsGroup _∙_ ε _⁻¹
open IsGroup isGroup public

Resources