We find follow(A) in case we find a production of type
A → α
Can α here be ε?
Like In the below example:
P → aPa | bPb | ε
If α could be ε, it is not LR(1)
Yes, α can be ε. α represents an arbitrary string, and since ε is a string it is a possible α
Because of this, your grammar isn't LR(1), and therefore it isn't SLR(1) either (since all SLR(1) grammars are also LR(1)).
To see this, we can construct the LR(1) configurating sets:
(1) P' -> .P ($)
P -> .aPa ($)
P -> .bPb ($)
P -> . ($)
(2) P -> a.Pa ($)
P -> .aPa (a)
P -> .bPb (a)
P -> . (a)
At this point we can stop because there's a shift/reduce confict: we can't tell whether to shift a or reduce P → ε given the terminal a.
With some more advanced math, you can prove that there are no LR(1) grammars for this language (the language of all even-length palindromes). This follows because the languages with LR(1) grammars are precisely the deterministic context-free languages, and the set of all even-length palindromes is not a deterministic context-free language.
Hope this helps!
Related
Suppose you have a grammar G and we find an LR(1) automaton for it. We can transform it into a LALR(1) or SLR(1) parser by doing state-merging and transforming rules but conflicts may appear.
My question is the following: must all problems appear in merged states? Is it possible for a non-conflict LR(1) state that wasn't merged to have a conflict either in LALR(1) or in SLR(1) automaton?
Interesting question! The answer is
if a grammar is LR(1), any conflicts in the LALR(1) parser must occur in merged states, but
if a grammar is LR(1), conflicts may appear in LR(1) states that were not merged.
For the first point, suppose you have a grammar that’s LR(1), so you can form its LR(1) parser. We can convert that to an LALR(1) parser by merging together all states with the same productions, ignoring lookaheads. If you have an LR(1) state that doesn’t get merged with anything, then that LR(1) state is present verbatim in the LALR(1) parser. And since the LR(1) state has no shift/reduce or reduce/reduce conflicts, the corresponding LALR(1) parser state won’t have any conflicts.
On the SLR(1) front, you can end up with states where no LR(1) state merging would occur, yet there's a reduce/reduce conflict. The intuition behind this is that you can have a state with no reduce/reduce conflicts in the LR(1) parser because the lookaheads have enough detail to resolve the conflict, yet when switching from LR(1) to SLR(1) and expanding the lookahead sets we accidentally introduce a reduce/reduce conflict. Here's an example of a grammar where this happens:
S → aTb | aR | cT
T → d
R → d
Here's the LR(1) configurating sets:
(1)
S' -> .S [$]
S -> .aTb [$]
S -> .aR [$]
S -> .cT [$]
(2)
S' -> S. [$]
(3)
S -> a.Tb [$]
S -> a.R [$]
T -> .d [b]
R -> .d [$]
(4)
T -> d. [b]
R -> d. [$]
(5)
S -> aT.b [$]
(6)
S -> aTb. [$]
(7)
S -> aR. [$]
(8)
S -> c.T [$]
T -> .d [$]
(9)
T -> d. [$]
(10)
S -> cT. [$]
These are the same item sets that you'd have in the SLR(1) parser. Notice, also, that FOLLOW(T) = {$, b}. This means that the LR(1) state
(4)
T -> d. [b]
R -> d. [$]
is converted to the SLR(1) state
(4)
T -> d. [b, $]
R -> d. [$]
which has a reduce/reduce conflict on $.
How do you identify whether a grammar is LL(1), LR(0), or SLR(1)?
Can anyone please explain it using this example, or any other example?
X → Yz | a
Y → bZ | ε
Z → ε
To check if a grammar is LL(1), one option is to construct the LL(1) parsing table and check for any conflicts. These conflicts can be
FIRST/FIRST conflicts, where two different productions would have to be predicted for a nonterminal/terminal pair.
FIRST/FOLLOW conflicts, where two different productions are predicted, one representing that some production should be taken and expands out to a nonzero number of symbols, and one representing that a production should be used indicating that some nonterminal should be ultimately expanded out to the empty string.
FOLLOW/FOLLOW conflicts, where two productions indicating that a nonterminal should ultimately be expanded to the empty string conflict with one another.
Let's try this on your grammar by building the FIRST and FOLLOW sets for each of the nonterminals. Here, we get that
FIRST(X) = {a, b, z}
FIRST(Y) = {b, epsilon}
FIRST(Z) = {epsilon}
We also have that the FOLLOW sets are
FOLLOW(X) = {$}
FOLLOW(Y) = {z}
FOLLOW(Z) = {z}
From this, we can build the following LL(1) parsing table:
a b z $
X a Yz Yz
Y bZ eps
Z eps
Since we can build this parsing table with no conflicts, the grammar is LL(1).
To check if a grammar is LR(0) or SLR(1), we begin by building up all of the LR(0) configurating sets for the grammar. In this case, assuming that X is your start symbol, we get the following:
(1)
X' -> .X
X -> .Yz
X -> .a
Y -> .
Y -> .bZ
(2)
X' -> X.
(3)
X -> Y.z
(4)
X -> Yz.
(5)
X -> a.
(6)
Y -> b.Z
Z -> .
(7)
Y -> bZ.
From this, we can see that the grammar is not LR(0) because there is a shift/reduce conflicts in state (1). Specifically, because we have the shift item X → .a and Y → ., we can't tell whether to shift the a or reduce the empty string. More generally, no grammar with ε-productions is LR(0).
However, this grammar might be SLR(1). To see this, we augment each reduction with the lookahead set for the particular nonterminals. This gives back this set of SLR(1) configurating sets:
(1)
X' -> .X
X -> .Yz [$]
X -> .a [$]
Y -> . [z]
Y -> .bZ [z]
(2)
X' -> X.
(3)
X -> Y.z [$]
(4)
X -> Yz. [$]
(5)
X -> a. [$]
(6)
Y -> b.Z [z]
Z -> . [z]
(7)
Y -> bZ. [z]
The shift/reduce conflict in state (1) has been eliminated because we only reduce when the lookahead is z, which doesn't conflict with any of the other items.
If you have no FIRST/FIRST conflicts and no FIRST/FOLLOW conflicts, your grammar is LL(1).
An example of a FIRST/FIRST conflict:
S -> Xb | Yc
X -> a
Y -> a
By seeing only the first input symbol "a", you cannot know whether to apply the production S -> Xb or S -> Yc, because "a" is in the FIRST set of both X and Y.
An example of a FIRST/FOLLOW conflict:
S -> AB
A -> fe | ε
B -> fg
By seeing only the first input symbol "f", you cannot decide whether to apply the production A -> fe or A -> ε, because "f" is in both the FIRST set of A and the FOLLOW set of A (A can be parsed as ε/empty and B as f).
Notice that if you have no epsilon-productions you cannot have a FIRST/FOLLOW conflict.
Simple answer:A grammar is said to be an LL(1),if the associated LL(1) parsing table has atmost one production in each table entry.
Take the simple grammar A -->Aa|b.[A is non-terminal & a,b are terminals]
then find the First and follow sets A.
First{A}={b}.
Follow{A}={$,a}.
Parsing table for Our grammar.Terminals as columns and Nonterminal S as a row element.
a b $
--------------------------------------------
S | A-->a |
| A-->Aa. |
--------------------------------------------
As [S,b] contains two Productions there is a confusion as to which rule to choose.So it is not LL(1).
Some simple checks to see whether a grammar is LL(1) or not.
Check 1: The Grammar should not be left Recursive.
Example: E --> E+T. is not LL(1) because it is Left recursive.
Check 2: The Grammar should be Left Factored.
Left factoring is required when two or more grammar rule choices share a common prefix string.
Example: S-->A+int|A.
Check 3:The Grammar should not be ambiguous.
These are some simple checks.
LL(1) grammar is Context free unambiguous grammar which can be parsed by LL(1) parsers.
In LL(1)
First L stands for scanning input from Left to Right. Second L stands
for Left Most Derivation. 1 stands for using one input symbol at each
step.
For Checking grammar is LL(1) you can draw predictive parsing table. And if you find any multiple entries in table then you can say grammar is not LL(1).
Their is also short cut to check if the grammar is LL(1) or not .
Shortcut Technique
With these two steps we can check if it LL(1) or not.
Both of them have to be satisfied.
1.If we have the production:A->a1|a2|a3|a4|.....|an.
Then,First(a(i)) intersection First(a(j)) must be phi(empty set)[a(i)-a subscript i.]
2.For every non terminal 'A',if First(A) contains epsilon
Then First(A) intersection Follow(A) must be phi(empty set).
For the given context free grammar:
S -> G $
G -> PG | P
P -> id : R
R -> id R | epsilon
How do I rewrite the grammar so that it is LR(1)?
The current grammar has shift/reduce conflicts when parsing the input "id : .id", where "." is the input pointer for the parser.
This grammar produces the language satisfying the regular expression (id:(id)*)+
It's easy enough to produce an LR(1) grammar for the same language. The trick is finding one which has a similar parse tree, or at least from which the original parse tree can be recovered easily.
Here's a manually generated grammar, which is slightly simplified from the general algorithm. In effect, we rewrite the regular expression:
(id:id*)+
to:
id(:id+)*:id*
which induces the grammar:
S → id G $
G → P G | P'
P' → : R'
P → : R
R' → ε | id R'
R → ε | id R
which is LALR(1).
In effect, we've just shifted all the productions one token to the right, and there is a general algorithm which can be used to create an LR(1) grammar from an LR(k+1) grammar for any k≥1. (The version of this algorithm I'm using comes from Parsing Theory by S. Sippu & E. Soisalon-Soininen, Vol II, section 6.7.)
The non-terminals of the new grammar will have the form (x, V, y) where V is a symbol from the original grammar (either a terminal or a non-terminal) and x and y are terminal sequences of maximum length k such that:
y ∈ FOLLOWk(V)
x ∈ FIRSTk(Vy)
(The lengths of y and consequently x might be less than k if the end of input is included in the follow set. Some people avoid this issue by adding k end symbols, but I think this version is just as simple.)
A non-terminal (x, V, y) will generate the x-derivative of the strings derived from Vy from the original grammar. Informally, the entire grammar is shifted k tokens to the right; each non-terminal matches a string which is missing the first k tokens but is augmented with the following k tokens.
The productions are generated mechanically from the original productions. First, we add a new start symbol, S' with productions:
S' → x (x, S, ε)
for every x ∈ FIRSTk(S). Then, for every production
T → V0 V1 … Vm
we generate the set of productions:
(x0,T,xm+1) → (x0,V0,x1) (x1,V1,x2) … (xm,Vm,xm+1)
and for every terminal A we generate the set of productions
(Ax,A,xB) → B if |x| = k
(Ax,A,x) → ε if |x| ≤ k
Since there is an obvious homomorphism from the productions in the new grammar to the productions in the old grammar, we can directly create the original parse tree, although we need to play some tricks with the semantic values in order to correctly attach them to the parse tree.
Given a grammar G defined by
A -> Ca
B -> Cb
C -> e|f
Is this grammar LL(1)?
I realize that we could compress this down into a single line, but that's not the point of this question.
Mainly, can an LL(1) grammar have multiple rules that begin with the same non-terminal?
As a follow up question, how do I construct a parse table for the above grammar?
I've worked out the following:
FIRST(A) = {e,f}
FIRST(B) = {e,f}
FIRST(C) = {a,b}
FOLLOW(A) = {}
FOLLOW(B) = {}
FOLLOW(C) = {a,b}
I looked at this post, but didn't understand how they went from the FIRSTs and FOLLOWs to a table.
The grammar you've given is not LL(1) because there is a FIRST/FIRST conflict between the two productions A → Ca and A → Cb.
In general, grammars with multiple productions for the same nonterminal that begin with the same nonterminal will not be LL(1) because you will get a FIRST/FIRST conflict. There are grammars with this property that are LL(1), though they're essentially degenerate cases. Consider, for example, the following grammar:
A → Ea
A → Eb
E → ε
Here, the nonterminal E only expands out to the empty string ε and therefore, in effect, isn't really there. Therefore, the above grammar is LL(1) because there are no FIRST/FIRST conflicts between the two productions. To see this, here's the parse table:
a b $
A Ea Eb -
E ε ε -
Hope this helps!
I am solve your question in 2 case:
First case if the terminal is {a,b,e,f}
Second case if the terminal is {a,b,f} and e is epsilon
so no multipe entry this is LL(1).
For more information:
look at this explanation and example below:
Best regards
How do you identify whether a grammar is LL(1), LR(0), or SLR(1)?
Can anyone please explain it using this example, or any other example?
X → Yz | a
Y → bZ | ε
Z → ε
To check if a grammar is LL(1), one option is to construct the LL(1) parsing table and check for any conflicts. These conflicts can be
FIRST/FIRST conflicts, where two different productions would have to be predicted for a nonterminal/terminal pair.
FIRST/FOLLOW conflicts, where two different productions are predicted, one representing that some production should be taken and expands out to a nonzero number of symbols, and one representing that a production should be used indicating that some nonterminal should be ultimately expanded out to the empty string.
FOLLOW/FOLLOW conflicts, where two productions indicating that a nonterminal should ultimately be expanded to the empty string conflict with one another.
Let's try this on your grammar by building the FIRST and FOLLOW sets for each of the nonterminals. Here, we get that
FIRST(X) = {a, b, z}
FIRST(Y) = {b, epsilon}
FIRST(Z) = {epsilon}
We also have that the FOLLOW sets are
FOLLOW(X) = {$}
FOLLOW(Y) = {z}
FOLLOW(Z) = {z}
From this, we can build the following LL(1) parsing table:
a b z $
X a Yz Yz
Y bZ eps
Z eps
Since we can build this parsing table with no conflicts, the grammar is LL(1).
To check if a grammar is LR(0) or SLR(1), we begin by building up all of the LR(0) configurating sets for the grammar. In this case, assuming that X is your start symbol, we get the following:
(1)
X' -> .X
X -> .Yz
X -> .a
Y -> .
Y -> .bZ
(2)
X' -> X.
(3)
X -> Y.z
(4)
X -> Yz.
(5)
X -> a.
(6)
Y -> b.Z
Z -> .
(7)
Y -> bZ.
From this, we can see that the grammar is not LR(0) because there is a shift/reduce conflicts in state (1). Specifically, because we have the shift item X → .a and Y → ., we can't tell whether to shift the a or reduce the empty string. More generally, no grammar with ε-productions is LR(0).
However, this grammar might be SLR(1). To see this, we augment each reduction with the lookahead set for the particular nonterminals. This gives back this set of SLR(1) configurating sets:
(1)
X' -> .X
X -> .Yz [$]
X -> .a [$]
Y -> . [z]
Y -> .bZ [z]
(2)
X' -> X.
(3)
X -> Y.z [$]
(4)
X -> Yz. [$]
(5)
X -> a. [$]
(6)
Y -> b.Z [z]
Z -> . [z]
(7)
Y -> bZ. [z]
The shift/reduce conflict in state (1) has been eliminated because we only reduce when the lookahead is z, which doesn't conflict with any of the other items.
If you have no FIRST/FIRST conflicts and no FIRST/FOLLOW conflicts, your grammar is LL(1).
An example of a FIRST/FIRST conflict:
S -> Xb | Yc
X -> a
Y -> a
By seeing only the first input symbol "a", you cannot know whether to apply the production S -> Xb or S -> Yc, because "a" is in the FIRST set of both X and Y.
An example of a FIRST/FOLLOW conflict:
S -> AB
A -> fe | ε
B -> fg
By seeing only the first input symbol "f", you cannot decide whether to apply the production A -> fe or A -> ε, because "f" is in both the FIRST set of A and the FOLLOW set of A (A can be parsed as ε/empty and B as f).
Notice that if you have no epsilon-productions you cannot have a FIRST/FOLLOW conflict.
Simple answer:A grammar is said to be an LL(1),if the associated LL(1) parsing table has atmost one production in each table entry.
Take the simple grammar A -->Aa|b.[A is non-terminal & a,b are terminals]
then find the First and follow sets A.
First{A}={b}.
Follow{A}={$,a}.
Parsing table for Our grammar.Terminals as columns and Nonterminal S as a row element.
a b $
--------------------------------------------
S | A-->a |
| A-->Aa. |
--------------------------------------------
As [S,b] contains two Productions there is a confusion as to which rule to choose.So it is not LL(1).
Some simple checks to see whether a grammar is LL(1) or not.
Check 1: The Grammar should not be left Recursive.
Example: E --> E+T. is not LL(1) because it is Left recursive.
Check 2: The Grammar should be Left Factored.
Left factoring is required when two or more grammar rule choices share a common prefix string.
Example: S-->A+int|A.
Check 3:The Grammar should not be ambiguous.
These are some simple checks.
LL(1) grammar is Context free unambiguous grammar which can be parsed by LL(1) parsers.
In LL(1)
First L stands for scanning input from Left to Right. Second L stands
for Left Most Derivation. 1 stands for using one input symbol at each
step.
For Checking grammar is LL(1) you can draw predictive parsing table. And if you find any multiple entries in table then you can say grammar is not LL(1).
Their is also short cut to check if the grammar is LL(1) or not .
Shortcut Technique
With these two steps we can check if it LL(1) or not.
Both of them have to be satisfied.
1.If we have the production:A->a1|a2|a3|a4|.....|an.
Then,First(a(i)) intersection First(a(j)) must be phi(empty set)[a(i)-a subscript i.]
2.For every non terminal 'A',if First(A) contains epsilon
Then First(A) intersection Follow(A) must be phi(empty set).