I create about 20k constraints and on my machine it takes about 3 minutes to solve them. I have different kind of constraints and below I give examples and explain them. I uploaded the assertions to http://filebin.ca/vKcV1gvuGG3.
I'm interested in solving larger constraint systems, thus I'd like to speed the process up. I would like to ask if you have suggestions on how to solve them faster e.g. by using appropriate tactics. From the tutorial on strategies I know the tactics, but I don't seem to get a positive difference by applying tactics...
The li are labels of a tree. The 1st type makes restrictions on the values of the labels. The label-values typically range between 10-20 different values.
Or(l6 == 11, Or(l6 == 0, l6 == 1, l6 == 2, l6 == 3, l6 == 4,
l6 == 5, l6 == 6, l6 == 7, l6 == 8, l6 == 9, l6 == 10))
The 2nd type relates different labels to each other.
Implies(l12 == 0, Or(l10 == 2, l10 == 5, l10 == 7, l10 == 8, l10 == 10,
False, False))
The 3rd type defines and relates functions f: Int --> Int (or f: BitVector --> BitVector, at loss of completeness), where bound_{s, v} is just a function name, and n is an ID of a node. The goal is to find a satisfying assignment to the functions bound.
Implies(And(bound_s_v (18) >= 0, l18 == 0),
And(bound_s_v (19) >= 0,
bound_s_v (19) >=
bound_s_v (18),
bound_s_v (26) >= 0,
bound_s_v (26) >=
bound_s_v (18)))
The last type determines if a bound is required (>= 0) or not (== -1, )
Or(bound_s'_v'(0) >= 0, bound_s'_v'(0) == -1)
Also there is a requirement that for some initial state the bound is required:
`bound_s0_v0(0) >= 0`
Description of the exutable file: In the first 2-3 lines the script initiates the solver, imports z3 and in the last line calls print s.check()
Presumbaly, you could try to use solver 'qflia', since I see no quantifier in your logic.
Edit:
I tried 'qflia', but it didn't make it faster. Maybe, you should try other solvers as well.
Related
I have a finite set of pairs of type (int a, int b). The exact values of the pairs are explicitly present in the knowledge base. For example it could be represented by a function (int a, int b) -> (bool exists) which is fully defined on a finite domain.
I would like to write a function f with signature (int b) -> (int count), representing the number of pairs containing the specified b value as its second member. I would like to do this in z3 python, though it would also be useful to know how to do this in the z3 language
For example, my pairs could be:
(0, 0)
(0, 1)
(1, 1)
(1, 2)
(2, 1)
then f(0) = 1, f(1) = 3, f(2) = 1
This is a bit of an odd thing to do in z3: If the exact values of the pairs are in your knowledge base, then why do you need an SMT solver? You can just search and count using your regular programming techniques, whichever language you are in.
But perhaps you have some other constraints that come into play, and want a generic answer. Here's how one would code this problem in z3py:
from z3 import *
pairs = [(0, 0), (0, 1), (1, 1), (1, 2), (2, 1)]
def count(snd):
return sum([If(snd == p[1], 1, 0) for p in pairs])
s = Solver()
searchFor = Int('searchFor')
result = Int('result')
s.add(Or(*[searchFor == d[0] for d in pairs]))
s.add(result == count(searchFor))
while s.check() == sat:
m = s.model()
print("f(" + str(m[searchFor]) + ") = " + str(m[result]))
s.add(searchFor != m[searchFor])
When run, this prints:
f(0) = 1
f(1) = 3
f(2) = 1
as you predicted.
Again; if your pairs are exactly known (i.e., they are concrete numbers), don't use z3 for this problem: Simply write a program to count as needed. If the database values, however, are not necessarily concrete but have other constraints, then above would be the way to go.
To find out how this is coded in SMTLib (the native language z3 speaks), you can insert print(s.sexpr()) in the program before the while loop starts. That's one way. Of course, if you were writing this by hand, you might want to code it differently in SMTLib; but I'd strongly recommend sticking to higher-level languages instead of SMTLib as it tends to be hard to read/write for anyone except machines.
Let's say I have a z3py program like this one:
import z3
a = z3.Int("a")
input_0 = z3.Int("input_0")
output = z3.Int("output")
some_formula = z3.If(a < input_0, 1, z3.If(a > 1, 4, 2))
s = z3.Solver()
s.add(output == some_formula)
s.check()
m = s.model()
print(m)
Is there an elegant way for me to retrieve the branching conditions from some_formula?
So get a list like [a < input_0, a > 1]. It should work for arbitrarily deep nesting of if expressions.
I know there is some way to use cubes, but I am not able to retrieve more than two cube expressions. I am not sure how to configure the solver.
My ultimate goal is to force the solver to give me different outputs based on the constraints I push and pop. The constraints are the set of conditions I have inferred from this formula.
You can print the cubes using:
for cube in s.cube():
print cube
But this isn't going to really help you. For your example, it prints:
[If(a + -1*input_0 >= 0, If(a <= 1, 2, 4), 1) == 1]
[Not(If(a + -1*input_0 >= 0, If(a <= 1, 2, 4), 1) == 1)]
which isn't quite what you were looking for.
The easiest way to go about your problem would be to directly walk down the AST of the formula yourself, and grab the conditions as you walk along the expressions. Of course, Z3 AST is quite a hairy object (pun intended!), so this will require quite a bit of programming. But reading through the constructors (If, Var etc.) in this file can get you started: https://z3prover.github.io/api/html/z3py_8py_source.html
Alright,thanks #alias! I came up with a custom version, which gets the job done. If someone knows a more elegant way to do this, please let me know.
import z3
a = z3.Int("a")
input_0 = z3.Int("input_0")
output = z3.Int("output")
some_formula = z3.If(a < input_0, 1, z3.If(a > 1, 4, 2))
nested_formula = z3.If(some_formula == 1, 20, 10)
s = z3.Solver()
s.add(output == some_formula)
s.check()
m = s.model()
print(m)
def get_branch_conditions(z3_formula):
conditions = []
if z3.is_app_of(z3_formula, z3.Z3_OP_ITE):
# the first child is usually the condition
cond = z3_formula.children()[0]
conditions.append(cond)
for child in z3_formula.children():
conditions.extend(get_branch_conditions(child))
return conditions
conds = get_branch_conditions(some_formula)
print(conds)
conds = get_branch_conditions(nested_formula)
print(conds)
I'm experimenting with (and failing at) reducing sets in z3 over operations like addition. The idea is eventually to prove stuff about arbitrary reductions over reasonably-sized fixed-sized sets.
The first of the two examples below seems like it should yield unsat, but it doesn't. The second does work, but I would prefer not to use it as it requires incrementally fiddling with the model.
def test_reduce():
LIM = 5
VARS = 10
poss = [Int('i%d'%x) for x in range(VARS)]
i = Int('i')
s = Solver()
arr = Array('arr', IntSort(), BoolSort())
s.add(arr == Lambda(i, And(i < LIM, i >= 0)))
a = arr
for x in range(len(poss)):
s.add(Implies(a != EmptySet(IntSort()), arr[poss[x]]))
a = SetDel(a, poss[x])
def final_stmt(l):
if len(l) == 0: return 0
return If(Not(arr[l[0]]), 0, l[0] + (0 if len(l) == 1 else final_stmt(l[1:])))
sm = final_stmt(poss)
s.push()
s.add(sm == 1)
assert s.check() == unsat
Interestingly, the example below works much better, but I'm not sure why...
def test_reduce_with_loop_model():
s = Solver()
i = Int('i')
arr = Array('arr', IntSort(), BoolSort())
LIM = 1000
s.add(arr == Lambda(i, And(i < LIM, i >= 0)))
sm = 0
f = Int(str(uuid4()))
while True:
s.push()
s.add(arr[f])
chk = s.check()
if chk == unsat:
s.pop()
break
tmp = s.model()[f]
sm = sm + tmp
s.pop()
s.add(f != tmp)
s.push()
s.add(sm == sum(range(LIM)))
assert s.check() == sat
s.pop()
s.push()
s.add(sm == 11)
assert s.check() == unsat
Note that your call to:
f = Int(str(uuid4()))
Is inside the loop in the first case, and is outside the loop in the second case. So, the second case simply works on one variable, and thus converges quickly. While the first one keeps creating variables and creates a much harder problem for z3. It's not surprising at all that these two behave significantly differently, as they encode entirely different constraints.
As a general note, reducing an array of elements with an operation is just not going to be an easy problem for z3. First, you have to assume an upper bound on the elements. And if that's the case, then why bother with Lambda or Array at all? Simply create a Python list of that many variables, and ignore the array logic completely. That is:
elts = [Int("s%d"%i) for i in range(100)]
And then to access the elements of your 'array', simply use Python accessor notation elts[12].
Note that this only works if all your accesses are with a constant integer; i.e., your index cannot be symbolic. But if you're looking for proving reduction properties, that should suffice; and would be much more efficient.
In Z3 I can call (get-objectives) to have a dump of the resulting weights.
(e.g. here)
It prints something like this:
(objectives
(aaa 1)
(bbb 0)
)
In z3py however Optimize.objectives() prints a dump of the calculation for the objectives, not however the calculated weights, as seen here:
[If(a == 3, 0, 1), If(b == 3, 0, 1)]
Is there a way how I can get the calculated weights? or the weight of a specific objective as in the standard z3?
Here is my example code:
from z3 import *
a, b = Ints('a b')
s = Optimize()
s.add(3 <= a, a <= 10)
s.add(3 <= b, b <= 10)
s.add(a >= 2*b)
s.add_soft(a == 3, weight=1, id="aaa")
s.add_soft(b == 3, weight=1, id="bbb")
print(s.check())
print(s.model())
print(s.objectives())
You can use the model to evaluate the objectives:
m = s.model()
print [m.evaluate(o) for o in s.objectives()]
This yields:
sat
[1, 0]
I have a z3 Array:
x = Array('x', IntSort(), IntSort())
A fixed number n:
n = 10
And a filtering condition based on simple arithmetic:
lambda i: Or(i == 0, i > 2)
What I want is to know the total number of elements from index 0 to index n which satisfy this condition (something that, if this were a normal python list, would look like len(filter(lambda i: i == 0 or i > 2, x)).
I can't figure out how to do this in z3. I tried
y == Int('y')
solver.add(y == sum([1 if Or(x[i] == 0, x[i] > 2) else 0 for i in range(0,n)]))
but get the following error:
z3.z3types.Z3Exception: Symbolic expressions cannot be cast to concrete Boolean values.
Is there a way to proceed? Many thanks!
It'd be best to post the exact code you tried. For one thing, the if-then-else should be coded using the If construct and the sum is best expressed using Sum. The following works fine, for instance:
from z3 import *
x = Array ('x', IntSort(), IntSort())
solver = Solver()
n = 10
y = Int('y')
solver.add(y == Sum([If(Or(x[i] == 0, x[i] > 2), 1, 0) for i in range(0,n)]))
print solver.check()
print solver.model()
But this'll be satisfiable for all values of y since there is no constraint on the contents of the array x.