Getting started with Java POS development - printing

I have a requirement where I need to connect to a POS printer from a Java Swing App.
What I came to know that there's a standard called Java POS to achieve this.
Now the problem is on java POS website (http://www.javapos.com/) I did not find anything that is helpful in getting me started.
I checked Java POS simulators (https://code.google.com/p/pos-device-simulator) but the thing is, even if I start that successfully I get no clue what to do, how to test any code against these simulators.
Can someone guide me in the right direction? Where to begin my quest about using Java POS connect to a POS Printer and then print some data successfully?

I just started on the same quest and I think that the best way to do is to grab yourself a receipt printer from a well-known vendor such as Epson or Star Micronics. They normally provide enough documentation on to get started on the whole process. The device simulator is too complex and seems to be a bit buggy in my opinion.
Assuming that you managed to get yourself a printer, here's you'll need to do:
Generate a jpos.xml containing device specific information. The vendor should have a program which can generate this information for you.
Modify the jpos.properties under $jpos.jar/jpos/res to point it to the location of your jpos.xml. Note: Your vendor tool may do this automatically for you.
Add all the necessary libraries
Start on the sample codes provided by your vendor
The somewhat incomplete documentation of JavaPOS can be found as part of the UPOS documentation in Appendix B located at http://www.nrf-arts.org/content/unifiedpos
Also, the latest programming guide on JavaPOS that I found is here.
Hope this helps.

"I wonder when JavaPOS was written as a standard, why it was not considered to implement a Printer query mechanism so that one could just query the underlying system registry and find any conneccted JavaPos device. Do you have any idea how to do the above? I don't think it's implemented. For end user running a utility to generate a jpos.xml and then modify the files/cofniguration does not make any sense to me. – Alam Sher Sep 22 at 8:21 "
Generally on Pos system, peripherals are connected to serial ports and are not declared in os (microsoft, linux, ires ...). In many pos system, constructor provide their own implementation and tools for javapos (like ibm, toshiba ... http://www-01.ibm.com/support/docview.wss?uid=pos1R4000014) to help you to discover wich device is connected and build your jpos.xml.

Related

Control of shift registers with ESP8266 and MicroPython

I've an issue with my current micropython project on my ESP8266. I've a 10x10 LED matrix which i would like to control via 4 shift registers.
In general 3 pins are required for the controlling DATA, LATCH and CLOCK. After some hours of internet searching the most promising solution was the usage of SPI, where also found some useful instructions for the pyboard (thank you for the code btw):
https://forum.micropython.org/viewtopic.php?t=1219
I tried to replace the pyboard specific librarys with the general machine module for the ESP8266 to get access to the SPI class. It worked fine till a specific point but the main issue at the moment is that it was not capable provide a binary signal at the DATA pin.
To be honest I'm a little bit confused about the write methods in the machine.SPI class. The docu says the return value is None. So in general what is the purpose of a write method with a return value of None (sry for the maybe silly question)
Is there maybe another solution to get a binary signal out of the data pin? I'm not sure anymore if the usage of SPI is the best way to manage the controlling. Do you have some other examples or tutorials to get deeper into the topic?
Thank you for your kind response in advance,
BR charlzo

bluetooth communication in nxj

I'm nxj beginner.
I have some questions about bluetooth communication between PC and brick.
First, when bluetooth communication occurs, where is the birthplace processing this datas?
In other words, I want to know whether these datas will be processed on CPU or brick.
Second, what is exact roles CPU and brick in bluethooth communication?
That means what is processed on CPU and what is processed on brick.
I have searched almost web site but I can't find this anywhere.
Please help me. Thanks.
You can see it in the package structure.
lejos.nxt.*
This package contains classes running on the NXT-brick. All code in this package will be compiled for the brick and will run on the brick.
lejos.pc.*
Here the difference is not that clear. This is java-code you compile for personal computer. So most code runs on your computer. But some classes (e.g: RemoteMotorController) only send messages to the NXT-brick which gives commands to the motors.
lejos.pc.comm provides API's that allow you to communicate/control the nxt robot from the PC.
When importing the the libs to an Android project, it allows you to build an instance of the same environment used on a pc, but within android.
I agree it can be tough finding some things out. It would be great if there was as stronger lejos presence on SO
This question is months old and has remained un-answered I actually have a lot of questions about it myself, but I might be able to provide some insight for utter novices.
when using bluetooth with Android and NXJ robots, you use either lejos.pc.comm or lejos.NXJ.
Both provide APi's to do almost the same thing, but work a little differently. I don't know nearly enough about the NXJ api, but I do know that it is the one that lets you manipulate the robot much more effectively, such as outputting data to it's LCD screen, which you can't do with the pc.comm api
As far as I can tell, the pc.comm API uses both Android Bluetooth API's and it's own protocols to allow communication with Lego LCP commands.
(I want to come back to this, but I'm writing a dissert on the topic so I'll try to update it in a couple of days. Seems not many are interested though, shame)

Communication between delphi application and Windows NT system driver

I am trying to build a very simple driver. Its sole purpose will be to register "PsSetCreateProcessNotifyRoutine" and on callbacks recieved from kernel, notify my Win32 application about which proccesses are started and stoped.
I only know how to build such a simple driver with "DriverEntry" and "DriverUnload" and compile it with DDK. But I don't know how to actually implement communication. I know it can be done with IOCTL. But beyond that I am in the dark. I cannot find simple example of how to do that in Delphi. I only know it can be done.
So what I am looking for is some simple and understandable tutorial on how to do it or event better an example delphi program with acompaniying driver code. Maybe there are even other ways of communication.
Any help would be appriciated.
Doesn't matter if in Delphi or not. You have to use the function DeviceIoControl. Read the article in MSDN about it.
In short, you'll have to choose some IOCTL codes from the available set. Then you call DeviceIoControl with one of these codes and pass some data, and in driver you handle that request and return something else.
You can also handle standard IOCTLS, such as the ones generated by calling ReadFile or WriteFile in user-mode.
Don't look for a "tutorial how to do that in Delphi", just look for any tutorial. They're all the same, no matter the language, it's pure Win32/Native api stuff. Here's one for example, just googled it out.

Emulate GPS or a serial device

Is it possible to get location data out of Google Gears, Google Gelocation API or any other web location API (such as Fire Eagle) in such a format that it appears to other software as a GPS device?
It occured to me reading these answers to my question regarding WiFi location finding, on Super User, that if I could emulate a GPS unit, many of these web services could act as a 'poor-mans' GPS to otherwise less useful software that requires it.
Is GPSD an option?
Preferably OSX & Python, but I would be interested in any implementation.
There is a very similar thread on a Python mailinglist that mentions Windows virtual COM ports and discusses Unix's pseudo-tty capabilities. If the app(s) you want to use let you type in a specific tty device file, this may be the easiest route. (Short of asking the authors to provide a plugin API for what you're trying to do, or buying yourself a $20 bluetooth GPS mouse.)
Are you using OS X?
There is a project macosxvirtualserialport on Google code that provides a graphical wrapper around some of the features of a utility called socat. I'd recommend taking a look at socat if you see potential in the pseudo-tty route. I believe you could use socat to link a pipe from a Python program to a pseudo-tty.
Most native Mac apps will be querying IOServiceMatching for a device with kIOSerialBSDRS232Type, and I doubt that a pseudo-tty will show up as an IOKit service.
In this case, unless you can find a project that has already implemented such a thing, you will need to implement a driver as described in this How to create virtual COM port thread. If you're going to the trouble of create a device driver, you would want to base it on IOKit because of that likely IOServiceMatching query. You can find the Apple16X50Serial project mentioned in that post at the top of Apple's open source code list (go to the main page and pick an older OS release if you want to target something pre-10.6).
If your app is most useful with realtime data (e.g. the RouteBuddy app mentioned in the Python mailinglist thread can log current positions) then you will want to fetch updates from your web sources (hopefully they support long-polling) and convert them to basic NMEA RMC sentences. You do not want to do this from inside your driver code. Instead, divide your work up into kernel-land and user-land pieces that can communicate, and put as little of the code as possible into the kernel part.
If you want to let apps both read and write to these web services, your best bet would probably be to simulate a Garmin device. Garmin has more-or-less documented their protocol in the IntfSpec.pdf file included with their Device Interface SDK. Again, you'd want to split as much as you could into user-space code.
I was unable to find a project or utility that implements the kernel side of an IOKit-based virtual serial interface, but I'd be surprised if there wasn't one hiding somewhere out there. Unfortunately, most of the answers I found to that question were like this, with the developer being told to get busy writing a kext.
I'm not exactly sure how to accomplish what you're asking, but I may be able to lend some insight as to how you might begin to get it done. So here goes:
A GPS device shows up to most systems as nothing more than a serial device -- a.k.a. a COM port if you're dealing with Windows, /dev/ttySx if you're in *nix. By definition, a serial port's specific duty is to stream data across a bus, one block at a time. So, it would then follow logically that if you want to emulate the presence of a GPS device, you should gather the data you're consuming and put it into a stream that somehow acts like an active serial port.
There are, however, some complications you might want to consider:
Most GPS devices don't just send out location data; there's also information on satellite locations, fix quality, bearing, and so on. Then again, nobody's made any rules saying you have to make all that data available. There's probably more to this, but I'll admit that I need to do more research in this area myself.
I'm not sure how fast you can receive data when dealing with Google Latitude, etc., but any delays in receiving would definitely result in visible pauses in your "serial port"'s data stream. Again, this may not be as big a complication as it seems, because GPS devices are known to "burst" data across the bus anyway, but I'd definitely keep an eye on that. You want to make sure there's always a surplus of data coming across, not a shortage.
Along the way you'll also have to transform the coordinates you receive into valid GPS sentences, as well. You can find specifications for those, but I would definitely make friends with the NMEA standard -- even though it is a flawed standard, it's the one everyone seems to agree on anyway.
Hope this helped you, at least a little bit. Are there anymore details specific to your problem that you think could be useful in answering this question?
Take a look to Franson GPS Gate which allows you to connect to Google Earth among other things (like simulating GPS and so on). Is windows only though but I think you could get some useful ideas from it.
I haven't looked into it very much, but have you considered using Skyhook's SDK? It might provide you with some of what you are looking for. It's available for every major desktop and mobile OS.

Carmen Robotics

I have been working with Carmen http://carmen.sourceforge.net/ for a while now, and I really like the software but I need to make some changes inside the source code.
I am therefore interesting in some students reports/projects there have been working with Carmen, or any documentation of the source code.
I have been reading the documentation on the webpage for Carmen, but with all respect I think the literature there is a bit outdated and insufficient.
ROS is the new hot navigation toolkit for robotics. It has a professional development group and a very active community. The documentation is okay, but it's the best I've seen for robotic operating systems.
There are a lot of student project teams that are using it.
Check it out at www.ros.org
I'll be more specific on why ROS is awesome...
Built in visualizer/simulator rviz
- It has a record function which will record all of the messages passed out of nodes, this allows you take in a lot of raw data store it in a "ros bag" and then play it back later when you need to test your AI, but want to sit in your bed.
Built in navigation capabilities,
-all you have to do is write the publishers of data for your sensors.
-It has standard messages that you need to fill out so that the stack has enough information.
There is an Extended Kalman Filter which is pretty awesome because I didn't want to write one. Currently implementing it, i'll let you know how that turns out.
It also has built in message levels, by that I mean you can change which severity of print messages are printed during runtime, fairly handy for debugging.
There's a robot monitor node that you can publish the status of your sensors to and it bundles all of that information into a GUI for your viewing pleasure.
There are some basic drivers already written. For example SICK lidars are supported right out of the box.
There is also a built in transform function, to help you move everything to the right coordinate system.
ROS was made to run across multiple computers, but can work on just one.
Data transfer is handled over TCP ports.
I hope that's more helpful.

Resources