CUDA Dynamic memory allocation in kernel - memory

There are two arrays named A and B, they are corresponding to each other, and their space are allocated during the kernels running. the details of A and B are that A[i] is the position and B[i] is value.All the threads do the things below:
If the current thread's data is in the arrays update B,
Else expanding A and B, and insert the current thread's data into the arrays.
The initial size of A and B are zero.
Is the upper implementing supported by CUDA?

Concerning point #2, you would need something like C++'s realloc(), which, as long as I know, is not supported by CUDA. You can write your own realloc() according to this post
CUDA: Using realloc inside kernel
but I do not know how efficient will be this solution.
Alternatively, you should pre-allocate a "large" amount of global memory to be able to account for the worst case memory occupation scenario.

Related

All blocks read same global memory location section. Fastest method is?

I am writing an algorithm which all blocks are reading a same address. Such as we have a list=[1, 2, 3, 4], and all blocks are reading it and store it to their own shared memory...My test shows the more blocks reading it, the slower it will be...I guess no broadcast happen here? Any idea I can make it faster? Thank you!!!
I learnt from previous post that this can be broadcast in one wrap, seems can not happen in different wrap....(Actually in my case, the threads in one wrap are not reading a same location...)
Once list element is accessed by first warp of a SM unit, the second warp in same SM unit gets it from cache and broadcasts to all simt lanes. But another SM unit's warp may not have it in L1 cache so it fetches from L2 to L1 first.
It is similar in __constant__ memory but it requires same address to be accessed by all threads. Its latency is closer to register access. __constant__ memory is like instruction cache, you get more performance when all threads do same thing.
For example, if you have a Gaussian-filter that iterates over same coefficient-list of filter on all threads, it is better to use constant memory. Using shared memory does not have much advantage as the filter array is not scanned randomly. Shared memory is better when the filter array content is different per block or if it needs random access.
You can also combine constant memory and shared memory. Get half of list from constant memory, then the other half from shared memory. This should let 1024 threads hide latency of one memory type hidden behind the other.
If list is small enough, you can use registers directly (has to be compile-time known indices). But it increases register pressure and may decrease occupancy so be careful about this.
Some old cuda architectures (in case of fma operation) required one operand fetched from constant memory and the other operand from a register to achieve better performance in compute-bottlenecked algorithms.
In a test with 12000 floats as filter to be applied on all threads inputs, shared memory version with 128 threads-per-block completed work in 330 milliseconds while constant-memory version completed in 260 milliseconds and the L1 access performance was the real bottleneck in both versions so the real constant-memory performance is even better, as long as it is similar-index for all threads.

Is it safe for an OpenCL kernel to randomly write to a __global buffer?

I want to run an instrumented OpenCL kernel to get some execution metrics. More specifically, I have added a hidden global buffer which will be initialized from the host code with N zeros. Each of the N values are integers and they represent a different metric, which each kernel instance will increment in a different manner, depending on its execution path.
A simplistic example:
__kernel void test(__global int *a, __global int *hiddenCounter) {
if (get_global_id(0) == 0) {
// do stuff and then increment the appropriate counter (random numbers here)
hiddenCounter[0] += 3;
}
else {
// do stuff...
hiddenCounter[1] += 5;
}
}
After the kernel execution is complete, I need the host code to aggregate (a simple element-wise vector addition) all the hiddenCounter buffers and print the appropriate results.
My question is whether there are race conditions when multiple kernel instances try to write to the same index of the hiddenCounter buffer (which will definitely happen in my project). Do I need to enforce some kind of synchronization? Or is this impossible with __global arguments and I need to change it to __private? Will I be able to aggregate __private buffers from the host code afterwards?
My question is whether there are race conditions when multiple kernel instances try to write to the same index of the hiddenCounter buffer
The answer to this is emphatically yes, your code will be vulnerable to race conditions as currently written.
Do I need to enforce some kind of synchronization?
Yes, you can use global atomics for this purpose. All but the most ancient GPUs will support this. (anything supporting OpenCL 1.2, or cl_khr_global_int32_base_atomics and similar extensions)
Note that this will have a non-trivial performance overhead. Depending on your access patterns and frequency, collecting intermediate results in private or local memory and writing them out to global memory at the end of the kernel may be faster. (In the local case, the whole work group would share just one global atomic call for each updated cell - you'll need to use local atomics or a reduction algorithm to accumulate the values from individual work items across the group though.)
Another option is to use a much larger global memory buffer, with counters for each work item or group. In that case, you will not need atomics to write to them, but you will subsequently need to combine the values on the host. This uses much more memory, obviously, and likely more memory bandwidth too - modern GPUs should cache accesses to your small hiddenCounter buffer. So you'll need to work out/try which is the lesser evil in your case.

Does the order or syntax of allocate statement affect performance? (Fortran)

Because of having performance issues when passing a code from static to dynamic allocation, I started to wander about how memory allocation is managed in a Fortran code.
Specifically, in this question, I wander if the order or syntax used for the allocate statement makes any difference. That is, does it make any difference to allocate vectors like:
allocate(x(DIM),y(DIM))
versus
allocate(x(DIM))
allocate(y(DIM))
The syntax suggests that in the first case the program would allocate all the space for the vectors at once, possibly improving the performance, while in the second case it must allocate the space for one vector at a time, in such a way that they could end up far from each other. If not, that is, if the syntax does not make any difference, I wander if there is a way to control that allocation (for instance, allocating a vector for all space and using pointers to address the space allocated as multiple variables).
Finally, I notice now that I don't even know one thing: an allocate statement guarantees that at least a single vector occupies a contiguous space in memory (or the best it can?).
From the language standard point of view both ways how to write them are possible. The compiler is free to allocate the arrays where it wants. It normally calls malloc() to allocate some piece of memory and makes the allocatable arrays from that piece.
Whether it might allocate a single piece of memory for two different arrays in a single allocate statement is up to the compiler, but I haven't heard about any compiler doing that.
I just verified that my gfortran just calls __builtin_malloc two times in this case.
Another issue is already pointed out by High Performance Mark. Even when malloc() successfully returns, the actual memory pages might still not be assigned. On Linux that happens when you first access the array.
I don't think it is too important if those arrays are close to each other in memory or not anyway. The CPU can cache arrays from different regions of address space if it needs them.
Is there a way how to control the allocation? Yes, you can overload the malloc by your own allocator which does some clever things. It may be used to have always memory aligned to 32-bytes or similar purposes (example). Whether you will improve performance of your code by allocating things somehow close to each other is questionable, but you can have a try. (Of course this is completely compiler-dependent thing, a compiler doesn't have to use malloc() at all, but mostly they do.) Unfortunately, this will only works when the calls to malloc are not inlined.
There are (at least) two issues here, firstly the time taken to allocate the memory and secondly the locality of memory in the arrays and the impact of this on performance. I don't know much about the actual allocation process, although the links suggested by High Performance Mark and the answer by Vadimir F cover this.
From your question, it seems you are more interested in cache hits and memory locality given by arrays being next to each other. I would guess there is no guarantee either allocate statement ensures both arrays next to each other in memory. This is based on allocating arrays in a type, which in the fortran 2003 MAY 2004 WORKING DRAFT J3/04-007 standard
NOTE 4.20
Unless the structure includes a SEQUENCE statement, the use of this terminology in no way implies that these components are stored in this, or any other, order. Nor is there any requirement that contiguous storage be used.
From the discussion with Vadimir F, if you put allocatable arrays in a type and use the sequence keyword, e.g.
type botharrays
SEQUENCE
double precision, dimension(:), allocatable :: x, y
end type
this DOES NOT ensure they are allocated as adjacent in memory. For static arrays or lots of variables, a sequential type sounds like it may work like your idea of "allocating a vector for all space and using pointers to address the space allocated as multiple variables". I think common blocks (Fortran 77) allowed you to specify the relationship between memory location of arrays and variables in memory, but don't work with allocatable arrays either.
In short, I think this means you cannot ensure two allocated arrays are adjacent in memory. Even if you could, I don't see how this will result in a reduction in cache misses or improved performance. Even if you typically use the two together, unless the arrays are small enough that the cache will include multiple arrays in one read (assuming reads are allowed to go beyond array bounds) you won't benefit from the memory locality.

how to generate a bidimensional array with different "branch" lengths very fast

I am a Delphi programmer.
In a program I have to generate bidimensional arrays with different "branch" lengths.
They are very big and the operation takes a few seconds (annoying).
For example:
var a: array of array of Word;
i: Integer;
begin
SetLength(a, 5000000);
for i := 0 to 4999999 do
SetLength(a[i], Diff_Values);
end;
I am aware of the command SetLength(a, dim1, dim2) but is not applicable. Not even setting a min value (> 0) for dim2 and continuing from there because min of dim2 is 0 (some "branches" can be empty).
So, is there a way to make it fast? Not just by 5..10% but really FAST...
Thank you.
When dealing with a large amount of data, there's a lot of work that has to be done, and this places a theoretical minimum on the amount of time it can be done in.
For each of 5 million iterations, you need to:
Determine the size of the "branch" somehow
Allocate a new array of the appropriate size from the memory manager
Zero out all the memory used by the new array (SetLength does this for you automatically)
Step 1 is completely under your control and can possibly be optimized. 2 and 3, though, are about as fast as they're gonna get if you're using a modern version of Delphi. (If you're on an old version, you might benefit from installing FastMM and FastCode, which can speed up these operations.)
The other thing you might do, if appropriate, is lazy initialization. Instead of trying to allocate all 5 million arrays at once, just do the SetLength(a, 5000000); at first. Then when you need to get at a "branch", first check if its length = 0. If so, it hasn't been initialized, so initialize it to the proper length. This doesn't save time overall, in fact it will take slightly longer in total, but it does spread out the initialization time so the user doesn't notice.
If your initialization is already as fast as it will get, and your situation is such that lazy initialization can't be used here, then you're basically out of luck. That's the price of dealing with large amounts of data.
I just tested your exact code, with a constant for Diff_Values, timed it using GetTickCount() for rudimentary timing. If Diff_Values is 186 it takes 1466 milliseconds, if Diff_Values is 187 it fails with Out of Memory. You know, Out of Memory means Out of Address Space, not really Out of Memory.
In my opinion you're allocating so much data you run out of RAM and Windows starts paging, that's why it's slow. On my system I've got enough RAM for the process to allocate as much as it wants; And it does, until it fails.
Possible solutions
The obvious one: Don't allocate that much!
Figure out a way to allocate all data into one contiguous block of memory: helps with address space fragmentation. Similar to how a bi dimensional array with fixed size on the "branches" is allocated, but if your "branches" have different sizes, you'll need to figure a different mathematical formula, based on your data.
Look into other data structures, possibly ones that cache on disk (to brake the 2Gb address space limit).
In addition to Mason's points, here are some more ideas to consider:
If the branch lengths never change after they are allocated, and you have an upper bound on the total number of items that will be stored in the array across all branches, then you might be able to save some time by allocating one huge chunk of memory and divvying up the "branches" within that chunk yourself. Your array would become a 1 dimensional array of pointers, and each entry in that array points to the start of the data for that branch. You keep track of the "end" of the used space in your big block with a single pointer variable, and when you need to reserve space for a new "branch" you take the current "end" pointer value as the start of the new branch and increment the "end" pointer by the amount of space that branch requires. Don't forget to round up to dword boundaries to avoid misalignment penalties.
This technique will require more use of pointers, but it offers the potential of eliminating all the heap allocation overhead, or at least replacing the general purpose heap allocation with a purpose-built very simple, very fast suballocator that matches your specific use pattern. It should be faster to execute, but it will require more time to write and test.
This technique will also avoid heap fragmentation and reduces the releasing of all the memory to a single deallocation (instead of millions of separate allocations in your present model).
Another tip to consider: If the first thing you always do with the each newly allocated array "branch" is assign data into every slot, then you can eliminate step 3 in Mason's example - you don't need to zero out the memory if all you're going to do is immediately assign real data into it. This will cut your memory write operations by half.
Assuming you can fit the entire data structure into a contiguous block of memory, you can do the allocation in one shot and then take over the indexing.
Note: Even if you can't fit the data into a single contiguous block of memory, you can still use this technique by allocating multiple large blocks and then piecing them together.
First off form a helper array, colIndex, which is to contain the index of the first column of each row. Set the length of colIndex to RowCount+1. You build this by setting colIndex[0] := 0 and then colIndex[i+1] := colIndex[i] + ColCount[i]. Do this in a for loop which runs up to and including RowCount. So, in the final entry, colIndex[RowCount], you store the total number of elements.
Now set the length of a to be colIndex[RowCount]. This may take a little while, but it will be quicker than what you were doing before.
Now you need to write a couple of indexers. Put them in a class or a record.
The getter looks like this:
function GetItem(row, col: Integer): Word;
begin
Result := a[colIndex[row]+col];
end;
The setter is obvious. You can inline these access methods for increased performance. Expose them as an indexed property for convenience to the object's clients.
You'll want to add some code to check for validity of row and col. You need to use colIndex for the latter. You can make this checking optional with {$IFOPT R+} if you want to mimic range checking for native indexing.
Of course, this is a total non-starter if you want to change any of your column counts after the initial instantiation!

Working with large arrays - OutOfRam

I have an algorithm where I create two bi-dimensional arrays like this:
TYPE
TPtrMatrixLine = array of byte;
TCurMatrixLine = array of integer;
TPtrMatrix = array of TPtrMatrixLine;
TCurMatrix = array of TCurMatrixLine;
function x
var
PtrsMX: TPtrMatrix;
CurMx : TCurMatrix;
begin
{ Try to allocate RAM }
SetLength(PtrsMX, RowNr+1, ColNr+1);
SetLength(CurMx , RowNr+1, ColNr+1);
for all rows do
for all cols do
FillMatrixWithData; <------- CPU intensive task. It could take up to 10-20 min
end;
The two matrices have always the same dimension.
Usually there are only 2000 lines and 2000 columns in the matrix but sometimes it can go as high as 25000x6000 so for both matrices I need something like 146.5 + 586.2 = 732.8MB of RAM.
The problem is that the two blocks need to be contiguous so in most cases, even if 500-600MB of free RAM doesn't seem much on a modern computer, I run out of RAM.
The algorithm fills the cells of the array with data based on the neighbors of that cell. The operations are just additions and subtractions.
The TCurMatrixLine is the one that takes a lot or RAM since it uses integers to store data. Unfortunately, values stored may have sign so I cannot use Word instead of integers. SmallInt is too small (my values are bigger than SmallInt, but smaller than Word). I hope that if there is any other way to implement this, it needs not to add a lot of overhead, since processing a matrix with so many lines/column already takes a lot of time. In other words I hope that decreasing memory requirements will not increase processing time.
Any idea how to decrease the memory requirements?
[I use Delphi 7]
Update
Somebody suggested that each row of my array should be an independent uni-dimensional array.
I create as many rows (arrays) as I need and store them in TList. Sound very good. Obviously there will be no problem allocation such small memory blocks. But I am afraid it will have a gigantic impact on speed. I use now
TCurMatrixLine = array of integer;
TCurMatrix = array of TCurMatrixLine;
because it is faster than TCurMatrix= array of array of integer (because of the way data is placed in memory). So, breaking the array in independent lines may affect the speed.
The suggestion of using a signed 2 byte integer will greatly aid you.
Another useful tactic is to mark your exe as being LARGE_ADDRESS_AWARE by adding {$SetPEFlags IMAGE_FILE_LARGE_ADDRESS_AWARE} to your .dpr file. This will only help if you are running on 64 bit Windows and will increase your address space from 2GB to 4GB.
It may not work on Delphi 7 (I seem to recall you are using D7) and you must be using FastMM since the old Borland memory manager isn't compatible with large address space. If $SetPEFlags isn't available you can still mark the exe with EDITBIN.
If you still encounter difficulties then yet another trick is to do allocate smaller sub-blocks of memory and use a wrapper class to handle mapping indices to the appropriate sub-block and offset within. You can use a default index property to make this transparent to the calling code.
Naturally a block allocated approach like this does incur some processing overhead but it's your best bet if you are having troubles with getting contiguous blocks.
If the absolute values of elements of CurMx fits word then you can store it in word and use another array of boolean for its sign. It reduces 1 byte for each element.
Have you considered to manually allocate the data structure on the heap?
...and measured how this will affect the memory usage and the performance?
Using the heap might actually increase speed and reduce the memory usage, because you can avoid the whole array to be copied from one memory segment to another memory segment. (Eg. if your FillMatrixWithData are declared with a non-const open array parameter).

Resources