Activation function for neural network - machine-learning

I need help in figuring out a suitable activation function. Im training my neural network to detect a piano note. So in this case I can have only one output. Either the note is there (1) or the note is not present (0).
Say I introduce a threshold value of 0.5 and say that if the output is greater than 0.5 the desired note is present and if its less than 0.5 the note isn't present, what type of activation function can I use. I assume it should be hard limit, but I'm wondering if sigmoid can also be used.

To exploit their full power, neural networks require continuous, differentable activation functions. Thresholding is not a good choice for multilayer neural networks. Sigmoid is quite generic function, which can be applied in most of the cases. When you are doing a binary classification (0/1 values), the most common approach is to define one output neuron, and simply choose a class 1 iff its output is bigger than a threshold (typically 0.5).
EDIT
As you are working with quite simple data (two input dimensions and two output classes) it seems a best option to actually abandon neural networks and start with data visualization. 2d data can be simply plotted on the plane (with different colors for different classes). Once you do it, you can investigate how hard is it to separate one class from another. If data is located in the way, that you can simply put a line separating them - linear support vector machine would be much better choice (as it will guarantee one global optimum). If data seems really complex, and the decision boundary has to be some curve (or even set of curves) I would suggest going for RBF SVM, or at least regularized form of neural network (so its training is at least quite repeatable). If you decide on neural network - situation is quite similar - if data is simply to separate on the plane - you can use simple (linear/threshold) activation functions. If it is not linearly separable - use sigmoid or hyperbolic tangent which will ensure non linearity in the decision boundary.
UPDATE
Many things changed through last two years. In particular (as suggested in the comment, #Ulysee) there is a growing interest in functions differentable "almost everywhere" such as ReLU. These functions have valid derivative in most of its domain, so the probability that we will ever need to derivate in these point is zero. Consequently, we can still use classical methods and for sake of completness put a zero derivative if we need to compute ReLU'(0). There are also fully differentiable approximations of ReLU, such as softplus function

The wikipedia article has some useful "soft" continuous threshold functions - see Figure Gjl-t(x).svg.
en.wikipedia.org/wiki/Sigmoid_function.
Following Occam's Razor, the simpler model using one output node is a good starting point for binary classification, where one class label is mapped to the output node when activated, and the other class label for when the output node is not activated.

Related

Why do we use fully-connected layer at the end of CNN?

I searched for the reason a lot but I didn't get it clear, May someone explain it in some more detail please?
In theory you do not have to attach a fully connected layer, you could have a full stack of convolutions till the very end, as long as (due to custom sizes/paddings) you end up with the correct number of output neurons (usually number of classes).
So why people usually do not do that? If one goes through the math, it will become visible that each output neuron (thus - prediction wrt. to some class) depends only on the subset of the input dimensions (pixels). This would be something among the lines of a model, which only decides whether an image is an element of class 1 depending on first few "columns" (or, depending on the architecture, rows, or some patch of the image), then whether this is class 2 on a few next columns (maybe overlapping), ..., and finally some class K depending on a few last columns. Usually data does not have this characteristic, you cannot classify image of the cat based on a few first columns and ignoring the rest.
However, if you introduce fully connected layer, you provide your model with ability to mix signals, since every single neuron has a connection to every single one in the next layer, now there is a flow of information between each input dimension (pixel location) and each output class, thus the decision is based truly on the whole image.
So intuitively you can think about these operations in terms of information flow. Convolutions are local operations, pooling are local operations. Fully connected layers are global (they can introduce any kind of dependence). This is also why convolutions work so well in domains like image analysis - due to their local nature they are much easier to train, even though mathematically they are just a subset of what fully connected layers can represent.
note
I am considering here typical use of CNNs, where kernels are small. In general one can even think of MLP as a CNN, where the kernel is of the size of the whole input with specific spacing/padding. However these are just corner cases, which are not really encountered in practise, and not really affecting the reasoning, since then they end up being MLPs. The whole point here is simple - to introduce global relations, if one can do it by using CNNs in a specific manner - then MLPs are not needed. MLPs are just one way of introducing this dependence.
Every fully connected (FC) layer has an equivalent convolutional layer (but not vice versa). Hence it is not necessary to add FC layers. They can always be replaced by convolutional layers (+ reshaping). See details.
Why do we use FC layers then?
Because (1) we are used to it (2) it is simpler. (1) is probably the reason for (2). For example, you would need to adjust the loss fuctions / the shape of the labels / add a reshape add the end if you used a convolutional layer instead of a FC layer.
I found this answer by Anil-Sharma on Quora helpful.
We can divide the whole network (for classification) into two parts:
Feature extraction:
In the conventional classification algorithms, like SVMs, we used to extract features from the data to make the classification work. The convolutional layers are serving the same purpose of feature extraction. CNNs capture better representation of data and hence we don’t need to do feature engineering.
Classification:
After feature extraction we need to classify the data into various classes, this can be done using a fully connected (FC) neural network. In place of fully connected layers, we can also use a conventional classifier like SVM. But we generally end up adding FC layers to make the model end-to-end trainable.
The CNN gives you a representation of the input image. To learn the sample classes, you should use a classifier (such as logistic regression, SVM, etc.) that learns the relationship between the learned features and the sample classes. Fully-connected layer is also a linear classifier such as logistic regression which is used for this reason.
Convolution and pooling layers extract features from image. So this layer doing some "preprocessing" of data. Fully connected layrs perform classification based on this extracted features.

Why use softmax only in the output layer and not in hidden layers?

Most examples of neural networks for classification tasks I've seen use the a softmax layer as output activation function. Normally, the other hidden units use a sigmoid, tanh, or ReLu function as activation function. Using the softmax function here would - as far as I know - work out mathematically too.
What are the theoretical justifications for not using the softmax function as hidden layer activation functions?
Are there any publications about this, something to quote?
I haven't found any publications about why using softmax as an activation in a hidden layer is not the best idea (except Quora question which you probably have already read) but I will try to explain why it is not the best idea to use it in this case :
1. Variables independence : a lot of regularization and effort is put to keep your variables independent, uncorrelated and quite sparse. If you use softmax layer as a hidden layer - then you will keep all your nodes (hidden variables) linearly dependent which may result in many problems and poor generalization.
2. Training issues : try to imagine that to make your network working better you have to make a part of activations from your hidden layer a little bit lower. Then - automaticaly you are making rest of them to have mean activation on a higher level which might in fact increase the error and harm your training phase.
3. Mathematical issues : by creating constrains on activations of your model you decrease the expressive power of your model without any logical explaination. The strive for having all activations the same is not worth it in my opinion.
4. Batch normalization does it better : one may consider the fact that constant mean output from a network may be useful for training. But on the other hand a technique called Batch Normalization has been already proven to work better, whereas it was reported that setting softmax as activation function in hidden layer may decrease the accuracy and the speed of learning.
Actually, Softmax functions are already used deep within neural networks, in certain cases, when dealing with differentiable memory and with attention mechanisms!
Softmax layers can be used within neural networks such as in Neural Turing Machines (NTM) and an improvement of those which are Differentiable Neural Computer (DNC).
To summarize, those architectures are RNNs/LSTMs which have been modified to contain a differentiable (neural) memory matrix which is possible to write and access through time steps.
Quickly explained, the softmax function here enables a normalization of a fetch of the memory and other similar quirks for content-based addressing of the memory. About that, I really liked this article which illustrates the operations in an NTM and other recent RNN architectures with interactive figures.
Moreover, Softmax is used in attention mechanisms for, say, machine translation, such as in this paper. There, the Softmax enables a normalization of the places to where attention is distributed in order to "softly" retain the maximal place to pay attention to: that is, to also pay a little bit of attention to elsewhere in a soft manner. However, this could be considered like to be a mini-neural network that deals with attention, within the big one, as explained in the paper. Therefore, it could be debated whether or not Softmax is used only at the end of neural networks.
Hope it helps!
Edit - More recently, it's even possible to see Neural Machine Translation (NMT) models where only attention (with softmax) is used, without any RNN nor CNN: http://nlp.seas.harvard.edu/2018/04/03/attention.html
Use a softmax activation wherever you want to model a multinomial distribution. This may be (usually) an output layer y, but can also be an intermediate layer, say a multinomial latent variable z. As mentioned in this thread for outputs {o_i}, sum({o_i}) = 1 is a linear dependency, which is intentional at this layer. Additional layers may provide desired sparsity and/or feature independence downstream.
Page 198 of Deep Learning (Goodfellow, Bengio, Courville)
Any time we wish to represent a probability distribution over a discrete variable with n possible values, we may use the softmax function. This can be seen as a generalization of the sigmoid function which was used to represent a probability
distribution over a binary variable.
Softmax functions are most often used as the output of a classifier, to represent the probability distribution over n different classes. More rarely, softmax functions can be used inside the model itself, if we wish the model to choose between one of n different options for some internal variable.
Softmax function is used for the output layer only (at least in most cases) to ensure that the sum of the components of output vector is equal to 1 (for clarity see the formula of softmax cost function). This also implies what is the probability of occurrence of each component (class) of the output and hence sum of the probabilities(or output components) is equal to 1.
Softmax function is one of the most important output function used in deep learning within the neural networks (see Understanding Softmax in minute by Uniqtech). The Softmax function is apply where there are three or more classes of outcomes. The softmax formula takes the e raised to the exponent score of each value score and devide it by the sum of e raised the exponent scores values. For example, if I know the Logit scores of these four classes to be: [3.00, 2.0, 1.00, 0.10], in order to obtain the probabilities outputs, the softmax function can be apply as follows:
import numpy as np
def softmax(x):
z = np.exp(x - np.max(x))
return z / z.sum()
scores = [3.00, 2.0, 1.00, 0.10]
print(softmax(scores))
Output: probabilities (p) = 0.642 0.236 0.087 0.035
The sum of all probabilities (p) = 0.642 + 0.236 + 0.087 + 0.035 = 1.00. You can try to substitute any value you know in the above scores, and you will get a different values. The sum of all the values or probabilities will be equal to one. That’s makes sense, because the sum of all probability is equal to one, thereby turning Logit scores to probability scores, so that we can predict better. Finally, the softmax output, can help us to understand and interpret Multinomial Logit Model. If you like the thoughts, please leave your comments below.

How to evolve weights of a neural network in Neuroevolution?

I'm new to Artificial Neural Networks and NeuroEvolution algorithms in general. I'm trying to implement the algorithm called NEAT (NeuroEvolution of Augmented Topologies), but the description in original public paper missed the method of how to evolve the weights of a network, it says
Connection weights mutate as in any NE system, with each connection either perturbed or not at each generation
I've done some searching about how to mutate weights in NE systems, but can't find any detailed description, unfortunately.
I know that while training a neural network, usually the backpropagation algorithm is used to correct the weights, but it only works if you have a fixed topology (structure) through generations and you know the answer to the problem. In NeuroEvolution, you don't know the answer, you have only the fitness function, so it's not possible to use backpropagation here.
I have some experience with training a fixed-topology NN using a genetic algorithm (What the paper refers to as the "traditional NE approach"). There are several different mutation and reproduction operators we used for this and we selected those randomly.
Given two parents, our reproduction operators (could also call these crossover operators) included:
Swap either single weights or all weights for a given neuron in the network. So for example, given two parents selected for reproduction either choose a particular weight in the network and swap the value (for our swaps we produced two offspring and then chose the one with the best fitness to survive in the next generation of the population), or choose a particular neuron in the network and swap all the weights for that neuron to produce two offspring.
swap an entire layer's weights. So given parents A and B, choose a particular layer (the same layer in both) and swap all the weights between them to produce two offsping. This is a large move so we set it up so that this operation would be selected less often than the others. Also, this may not make sense if your network only has a few layers.
Our mutation operators operated on a single network and would select a random weight and either:
completely replace it with a new random value
change the weight by some percentage. (multiply the weight by some random number between 0 and 2 - practically speaking we would tend to constrain that a bit and multiply it by a random number between 0.5 and 1.5. This has the effect of scaling the weight so that it doesn't change as radically. You could also do this kind of operation by scaling all the weights of a particular neuron.
add or subtract a random number between 0 and 1 to/from the weight.
Change the sign of a weight.
swap weights on a single neuron.
You can certainly get creative with mutation operators, you may discover something that works better for your particular problem.
IIRC, we would choose two parents from the population based on random proportional selection, then ran mutation operations on each of them and then ran these mutated parents through the reproduction operation and ran the two offspring through the fitness function to select the fittest one to go into the next generation population.
Of course, in your case since you're also evolving the topology some of these reproduction operations above won't make much sense because two selected parents could have completely different topologies. In NEAT (as I understand it) you can have connections between non-contiguous layers of the network, so for example you can have a layer 1 neuron feed another in layer 4, instead of feeding directly to layer 2. That makes swapping operations involving all the weights of a neuron more difficult - you could try to choose two neurons in the network that have the same number of weights, or just stick to swapping single weights in the network.
I know that while training a NE, usually the backpropagation algorithm is used to correct the weights
Actually, in NE backprop isn't used. It's the mutations performed by the GA that are training the network as an alternative to backprop. In our case backprop was problematic due to some "unorthodox" additions to the network which I won't go into. However, if backprop had been possible, I would have gone with that. The genetic approach to training NNs definitely seems to proceed much more slowly than backprop probably would have. Also, when using an evolutionary method for adjusting weights of the network, you start needing to tweak various parameters of the GA like crossover and mutation rates.
In NEAT, everything is done through the genetic operators. As you already know, the topology is evolved through crossover and mutation events.
The weights are evolved through mutation events. Like in any evolutionary algorithm, there is some probability that a weight is changed randomly (you can either generate a brand new number or you can e.g. add a normally distributed random number to the original weight).
Implementing NEAT might seem an easy task but there is a lot of small details that make it fairly complicated in the end. You might want to look at existing implementations and use one of them or at least be inspired by them. Everything important can be found at the NEAT Users Page.

extrapolation with recurrent neural network

I Wrote a simple recurrent neural network (7 neurons, each one is initially connected to all the neurons) and trained it using a genetic algorithm to learn "complicated", non-linear functions like 1/(1+x^2). As the training set, I used 20 values within the range [-5,5] (I tried to use more than 20 but the results were not changed dramatically).
The network can learn this range pretty well, and when given examples of other points within this range, it can predict the value of the function. However, it can not extrapolate correctly and predicting the values of the function outside the range [-5,5]. What are the reasons for that and what can I do to improve its extrapolation abilities?
Thanks!
Neural networks are not extrapolation methods (no matter - recurrent or not), this is completely out of their capabilities. They are used to fit a function on the provided data, they are completely free to build model outside the subspace populated with training points. So in non very strict sense one should think about them as an interpolation method.
To make things clear, neural network should be capable of generalizing the function inside subspace spanned by the training samples, but not outside of it
Neural network is trained only in the sense of consistency with training samples, while extrapolation is something completely different. Simple example from "H.Lohninger: Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, 1999. ISBN 3-540-14743-8" shows how NN behave in this context
All of these networks are consistent with training data, but can do anything outside of this subspace.
You should rather reconsider your problem's formulation, and if it can be expressed as a regression or classification problem then you can use NN, otherwise you should think about some completely different approach.
The only thing, which can be done to somehow "correct" what is happening outside the training set is to:
add artificial training points in the desired subspace (but this simply grows the training set, and again - outside of this new set, network's behavious is "random")
add strong regularization, which will force network to create very simple model, but model's complexity will not guarantee any extrapolation strength, as two model's of exactly the same complexity can have for example completely different limits in -/+ infinity.
Combining above two steps can help building model which to some extent "extrapolates", but this, as stated before, is not a purpose of a neural network.
As far as I know this is only possible with networks which do have the echo property. See Echo State Networks on scholarpedia.org.
These networks are designed for arbitrary signal learning and are capable to remember their behavior.
You can also take a look at this tutorial.
The nature of your post(s) suggests that what you're referring to as "extrapolation" would be more accurately defined as "sequence recognition and reproduction." Training networks to recognize a data sequence with or without time-series (dt) is pretty much the purpose of Recurrent Neural Network (RNN).
The training function shown in your post has output limits governed by 0 and 1 (or -1, since x is effectively abs(x) in the context of that function). So, first things first, be certain your input layer can easily distinguish between negative and positive inputs (if it must).
Next, the number of neurons is not nearly as important as how they're layered and interconnected. How many of the 7 were used for the sequence inputs? What type of network was used and how was it configured? Network feedback will reveal the ratios, proportions, relationships, etc. and aid in the adjustment of network weight adjustments to match the sequence. Feedback can also take the form of a forward-feed depending on the type of network used to create the RNN.
Producing an 'observable' network for the exponential-decay function: 1/(1+x^2), should be a decent exercise to cut your teeth on RNNs. 'Observable', meaning the network is capable of producing results for any input value(s) even though its training data is (far) smaller than all possible inputs. I can only assume that this was your actual objective as opposed to "extrapolation."

Why do we have to normalize the input for an artificial neural network? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
Why do we have to normalize the input for a neural network?
I understand that sometimes, when for example the input values are non-numerical a certain transformation must be performed, but when we have a numerical input? Why the numbers must be in a certain interval?
What will happen if the data is not normalized?
It's explained well here.
If the input variables are combined linearly, as in an MLP [multilayer perceptron], then it is
rarely strictly necessary to standardize the inputs, at least in theory. The
reason is that any rescaling of an input vector can be effectively undone by
changing the corresponding weights and biases, leaving you with the exact
same outputs as you had before. However, there are a variety of practical
reasons why standardizing the inputs can make training faster and reduce the
chances of getting stuck in local optima. Also, weight decay and Bayesian
estimation can be done more conveniently with standardized inputs.
In neural networks, it is good idea not just to normalize data but also to scale them. This is intended for faster approaching to global minima at error surface. See the following pictures:
Pictures are taken from the coursera course about neural networks. Author of the course is Geoffrey Hinton.
Some inputs to NN might not have a 'naturally defined' range of values. For example, the average value might be slowly, but continuously increasing over time (for example a number of records in the database).
In such case feeding this raw value into your network will not work very well. You will teach your network on values from lower part of range, while the actual inputs will be from the higher part of this range (and quite possibly above range, that the network has learned to work with).
You should normalize this value. You could for example tell the network by how much the value has changed since the previous input. This increment usually can be defined with high probability in a specific range, which makes it a good input for network.
There are 2 Reasons why we have to Normalize Input Features before Feeding them to Neural Network:
Reason 1: If a Feature in the Dataset is big in scale compared to others then this big scaled feature becomes dominating and as a result of that, Predictions of the Neural Network will not be Accurate.
Example: In case of Employee Data, if we consider Age and Salary, Age will be a Two Digit Number while Salary can be 7 or 8 Digit (1 Million, etc..). In that Case, Salary will Dominate the Prediction of the Neural Network. But if we Normalize those Features, Values of both the Features will lie in the Range from (0 to 1).
Reason 2: Front Propagation of Neural Networks involves the Dot Product of Weights with Input Features. So, if the Values are very high (for Image and Non-Image Data), Calculation of Output takes a lot of Computation Time as well as Memory. Same is the case during Back Propagation. Consequently, Model Converges slowly, if the Inputs are not Normalized.
Example: If we perform Image Classification, Size of Image will be very huge, as the Value of each Pixel ranges from 0 to 255. Normalization in this case is very important.
Mentioned below are the instances where Normalization is very important:
K-Means
K-Nearest-Neighbours
Principal Component Analysis (PCA)
Gradient Descent
When you use unnormalized input features, the loss function is likely to have very elongated valleys. When optimizing with gradient descent, this becomes an issue because the gradient will be steep with respect some of the parameters. That leads to large oscillations in the search space, as you are bouncing between steep slopes. To compensate, you have to stabilize optimization with small learning rates.
Consider features x1 and x2, where range from 0 to 1 and 0 to 1 million, respectively. It turns out the ratios for the corresponding parameters (say, w1 and w2) will also be large.
Normalizing tends to make the loss function more symmetrical/spherical. These are easier to optimize because the gradients tend to point towards the global minimum and you can take larger steps.
Looking at the neural network from the outside, it is just a function that takes some arguments and produces a result. As with all functions, it has a domain (i.e. a set of legal arguments). You have to normalize the values that you want to pass to the neural net in order to make sure it is in the domain. As with all functions, if the arguments are not in the domain, the result is not guaranteed to be appropriate.
The exact behavior of the neural net on arguments outside of the domain depends on the implementation of the neural net. But overall, the result is useless if the arguments are not within the domain.
I believe the answer is dependent on the scenario.
Consider NN (neural network) as an operator F, so that F(input) = output. In the case where this relation is linear so that F(A * input) = A * output, then you might choose to either leave the input/output unnormalised in their raw forms, or normalise both to eliminate A. Obviously this linearity assumption is violated in classification tasks, or nearly any task that outputs a probability, where F(A * input) = 1 * output
In practice, normalisation allows non-fittable networks to be fittable, which is crucial to experimenters/programmers. Nevertheless, the precise impact of normalisation will depend not only on the network architecture/algorithm, but also on the statistical prior for the input and output.
What's more, NN is often implemented to solve very difficult problems in a black-box fashion, which means the underlying problem may have a very poor statistical formulation, making it hard to evaluate the impact of normalisation, causing the technical advantage (becoming fittable) to dominate over its impact on the statistics.
In statistical sense, normalisation removes variation that is believed to be non-causal in predicting the output, so as to prevent NN from learning this variation as a predictor (NN does not see this variation, hence cannot use it).
The reason normalization is needed is because if you look at how an adaptive step proceeds in one place in the domain of the function, and you just simply transport the problem to the equivalent of the same step translated by some large value in some direction in the domain, then you get different results. It boils down to the question of adapting a linear piece to a data point. How much should the piece move without turning and how much should it turn in response to that one training point? It makes no sense to have a changed adaptation procedure in different parts of the domain! So normalization is required to reduce the difference in the training result. I haven't got this written up, but you can just look at the math for a simple linear function and how it is trained by one training point in two different places. This problem may have been corrected in some places, but I am not familiar with them. In ALNs, the problem has been corrected and I can send you a paper if you write to wwarmstrong AT shaw.ca
On a high level, if you observe as to where normalization/standardization is mostly used, you will notice that, anytime there is a use of magnitude difference in model building process, it becomes necessary to standardize the inputs so as to ensure that important inputs with small magnitude don't loose their significance midway the model building process.
example:
√(3-1)^2+(1000-900)^2 ≈ √(1000-900)^2
Here, (3-1) contributes hardly a thing to the result and hence the input corresponding to these values is considered futile by the model.
Consider the following:
Clustering uses euclidean or, other distance measures.
NNs use optimization algorithm to minimise cost function(ex. - MSE).
Both distance measure(Clustering) and cost function(NNs) use magnitude difference in some way and hence standardization ensures that magnitude difference doesn't command over important input parameters and the algorithm works as expected.
Hidden layers are used in accordance with the complexity of our data. If we have input data which is linearly separable then we need not to use hidden layer e.g. OR gate but if we have a non linearly seperable data then we need to use hidden layer for example ExOR logical gate.
Number of nodes taken at any layer depends upon the degree of cross validation of our output.

Resources