Find radius of a ball using camera calibration data - image-processing

A quick question, I'm using the Circle Hough Transform to detect balls in an image. Since the algorithm is computationally expensive, I've been wondering if it is possible to calculate the radius of the ball in pixels using camera calibration data. I've read the following question (see below) and figured that if I can find the distance between the camera and the ball, I could calculate the radius somehow, is this possible?
Finding distance from camera to object of known size
Many thanks!

Related

Real Distance of object from camera using camera matrix

How can I calculate the distance of an object of known size (e.g. aruco marker of 0.14m printed on paper) from camera. I know the camera matrix (camMatx) and my fx,fy ~= 600px assuming no distortion. From this data I am able to calculate the pose of the aruco marker and have obtained [R|t]. Now the task is to get the distance of the aruco marker from the camera. I also know the height of the camera from ground plane (15m).
How should I go about solving this problem. Any help would be appreciated. Also please note I have also seen approach of similar triangles, but that would work on knowing the distance of the object, which doesnt apply in my case as I have to calculate the distance.
N.B: I dont know the camera sensor height. But I know how high the camera is located above ground.
I know the dimensions of the area in which my object is moving (70m x 45m). In the end I would like to plot the coordinate of the moving object on a 2D map drawn to the scale.

Easiest/most robust to detect shape for OpenCV for Intersection over Union of two objects

I am trying to measure the precision of my marker tracking algorithm via post-processing a video.
My algorithm is: Find a printed planar marker in a Videostream and place a virtual marker at that position. I am working with AR.
Here are two frames of such a video:
Virtual Marker on top of detected marker
Virtual Marker with offset to actual marker
I want to calculate the Intersecion over Union / Jaccard Index of the actual marker and virtual marker. For the first picture it would give me ~98% and the second ~1/5th %. This will give me the quality for my algorithm, how precise and well it works.
I want to get the position and rotation of both markers in each frame with OpenCV and calculate the Jaccard Index. As you can see though, if I directly place a virtual marker on top of the paper marker, I will make it difficult for myself (with OpenCV) to detect them.
My idea is to not place a white marker on top of the actual marker, but place an easily detectable "thing" with a specific color or shape with an offset to the marker, let's say 10cm to the right maybe. Then I subtract the offset. So now, at the best case scenario, the position and rotation of the actual marker and the "thing" with the offset subtracted will be the same.
But what should I use as the easily detectable "thing"? I don't have enough experience with OpenCV to know what (colored?) shape I should use. The augmentation can go in front, behind, left, right... of the actual marker anytime during the video and it should do two things:
Not hinder the detection of the actual marker, like currently shown in the pictures
Be easily detectable itself
Help would be much appreciated!
Assuming you have enough white background around the visual marker:
You could use colored circles, for example in red, green, blue and black.
Use opencv blob detection [1] to detect all blobs and filter for circular ones:
Look-up average color values for detected blobs and filter for the colors of the circles.
Alternatively you could filter the whole image for each color and do blob detection on the filtered images. But this is slower.
Find the centroids (~ center point) of each blob using moments of the blob contours. [2] "Center of multiple blobs in an Image".
Now you have the four pixel positions of your circles. If you know the world coordinates of your light projected circles you can use solvePnP to get a pose from this.
Knowing the correct world coordinates is tricky in your case because you project the circle with light on a surface. This involves some 3D geometry. You need to know the transformation from camera coordinate system to pattern projector coordinate system and the projection parameters of your projector.
I guess you send the projected pattern as an image to the projector. I think you can then model the projector as a camera with a certain camera matrix (basically field of view & center point). Naturally you know the pixel coordinates of the projected circles. From this you can compute rays in 3D space (in projector coordinate system). As a starting point see [3]. Intersecting [4] them with the correct surface plane (in projector coordinate system) gives you the 3D coordinates of
the projected circle pattern in projector coordinate system. Transform these to camera coordinate system using your known transformation. Now use opencv solvePnP to determine pose of projected light marker.
How to get surface plane?
If your setup is static you could use visual marker detection of all recorded images and use mean oder median of marker pose as surface plane. Not sure what this implies for your evaluation though..
[1] https://www.learnopencv.com/blob-detection-using-opencv-python-c/
[2] https://www.learnopencv.com/find-center-of-blob-centroid-using-opencv-cpp-python/
[3] https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
[4] https://www.cs.princeton.edu/courses/archive/fall00/cs426/lectures/raycast/sld017.htm

Defining a 3D scene from a photo of a circle

Given a photo containing a circle, for example this photo of a fountain:
is it possible to define the 3D position and rotation of the fountain in relation to the camera?
I realise we have to define the scale, so lets say the fountain is 2m wide (the diameter of the circle consisting of the inner rim of the fountain is 2m).
So assuming the circle is a perfect circle, and defining the diameter to 2m, is it possible to determine how the circle and the camera relate spatially? I dont know any camera matrix or anything, the only information i have is the picture.
I specifically want to determine the 3D coordinates of a given pixel on the rim of the fountain.
What would be the math and/or OpenCV code to do this?
Circle with perspective is an ellipse. So you basicly you need an ellipse detector.
This algorithm should work:
Detect all ellipses in the given image.
Filter ellipses that you think they are not a circles in origin. (This is not possible using just 1 Camera so you have to depend on previous knowledge. Something like that you knows that you are taking a photo for a circle).
mmm I stopped typing here and bring a paper&pen and started figuring how to estimate the Homography and it is not that easy! you should deal with the circle a special case of an ellipse and then try to construct a linear system of equations. However, I made quick googling :
https://www.researchgate.net/publication/265212988_Homography_estimation_using_one_ellipse_correspondence_and_minimal_additional_information
http://www.macs.hw.ac.uk/bmvc2006/papers/306.pdf
Seems very interesting topic, I am going to spare sometimes on it later!

How do you counter a rotated camera?

We are currently using opencv to track a planar rectangular target. While directly straight(no pitch), this works perfectly using findContours with solvePnp and returns a very accurate location of the target.
The problem is, is that obviously we get the different results once we increase the pitch. We know the pitch of the camera at all time.
How would I "cancel out" the pitch of the camera, and obtain coordinates as if the camera was facing straight ahead?
In the general case you can use an affine transform to map the quadrilateral seen by the camera back to the original rectangle. In your case the quadrilateral seen by the camera may be a good approximation of a parallelogram since only one angle is changing, but in real-world applications you can generally assume that the camera can have non-zero values for each of the three rotations (e.g. in pitch, yaw, and roll).
http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.html
The transform allows you to calculate the matching coordinates (x,y) within the rectangle's plane given coordinates (x', y') in the image of the rectangle.

Finding distance from camera to object of known size

I am trying to write a program using opencv to calculate the distance from a webcam to a one inch white sphere. I feel like this should be pretty easy, but for whatever reason I'm drawing a blank. Thanks for the help ahead of time.
You can use triangle similarity to calibrate the camera angle and find the distance.
You know your ball's size: D units (e.g. cm). Place it at a known distance Z, say 1 meter = 100cm, in front of the camera and measure its apparent width in pixels. Call this width d.
The focal length of the camera f (which is slightly different from camera to camera) is then f=d*Z/D.
When you see this ball again with this camera, and its apparent width is d' pixels, then by triangle similarity, you know that f/d'=Z'/D and thus: Z'=D*f/d' where Z' is the ball's current distance from the camera.
To my mind you will need a camera model = a calibration model if you want to measure distance or other things (int the real-world).
The pinhole camera model is simple, linear and gives good results (but won't correct distortions, (whether they are radial or tangential).
If you don't use that, then you'll be able to compute disparity-depth map, (for instance if you use stereo vision) but it is relative and doesn't give you an absolute measurement, only what is behind and what is in front of another object....
Therefore, i think the answer is : you will need to calibrate it somehow, maybe you could ask the user to approach the sphere to the camera till all the image plane is perfectly filled with the ball, and with a prior known of the ball measurement, you'll be able to then compute the distance....
Julien,

Resources