I would like to know can we convert a image into base64 and save it in a database and access it in the views.
I have searched google and stackoverflow, all of them starts from middle like encoding or displaying the image.
I need to know how can we convert a image url/path(lets say i store image inside my app and its url stored in column)
How to encode it as base64 before saving(should we convert to base64 first and save in db?).
How to display it in the views
You can split this task to three or four steps:
getting the image
encoding to base64
storing it in database (optionaly)
display it in views
Getting the image
From Assets pipeline
If you are using Rails asset pipeline for that, you can use Rails.application.assets hash to get to image: Rails.application.assets['image_name.png'].to_s will give you the content of image_name.png image.
from file - local or by url
Here is the question about that on StackOverflow.
encode
Base64 Ruby module docs tells how to use Base64 encoding in Ruby:
Base64.strict_encode64(your_content_here)
NOTE: in this case strict_encode64 is preferrable over just encode64 because it doesn't add any newlines. (credit goes to Sergey Mell for pointing that out)
From docs:
encode64 - ... Line feeds are added to every 60 encoded characters.
strict_encode64 - ... No line feeds are added.
Store it in database (optionaly)
I suggest you to create a separate ActiveRecord model for that, with field of type text to keep base64 representation of image.
Display it in views
You can provide data-url to src attribute of img tag, so, the browser will decode image from base64 and display it just like regular image:
<img src="_BASE64_HERE"/>
Don't forget to change image format to whatever format you are using in data:image/png section.
UPDATE (2018-08-22): I have tried to use urlsafe_encode64, as suggested by Xornand, and for me it produces the output that is not recognized as image by the browser.
Tried in both Firefox 61.0.2 and Chromium 68.0.3440.106.
For the sake of reference and to enable experimentation, here are results themselves.
Image used as "original" (resized it to be even more small to reduce the size of base64 output):
encode64:
/9j/4AAQSkZJRgABAQEAYABhAAD/4QBARXhpZgAASUkqAAgAAAABAGmHBAAB
AAAAGgAAAAAAAAACAAKgCQABAAAAZAAAAAOgCQABAAAAfwAAAAAAAAD/2wBD
AAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwc
KDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/
/gA0T3B0aW1pemVkIGJ5IEpQRUdtaW5pIDMuMTQuMTQuNzI2NzA4NjAgMHhm
ZjIzZjM3OQD/wAARCAB/AGQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAA
AAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIh
MUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKT
lJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi
4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQF
BgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMi
MoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJma
oqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq
8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyNj85+tBbFEvE7j0Y/wA6YxrA2HIx
Jqwp4rS0LwvfayyspWKFj99z1+grvrf4TCSEMLqVzjqu3+VTKSRUYtnmQrS0
WTy9Tib0DfyNdNq/wz1WwUvbAyp6MMH/AArl7eKaw1JUuImjdcgq4x2NS2mt
CopqSuZkLf6Vdn/ZevR/ADgaHAv/AE9E/qteaQn9/de6NXoHw/c/YLVSetye
PxFKrsXT/wAzoPFigaovH/LIfzNYHet/xW2dVHtGP61gfxVqcKLMNXojjFUI
zVyI0AaSN8tFRKw2iigDxi9+S8mX0c1b0mxa6nDNGXUnCr/eNPNgbu5aduIz
g4HU1oaZdvp16JBErIo2hCe1M3SO20uKGwgVZdW0+G9Yjy4XfcR7EjgfSuv8
M6pqc91LZzWitLD1aORQCOxGOoI9K8t1W90vU9k0cM1vMgySuOvpVrwvrM1l
qguXnYkptLE9QOgqJQW5tGfQ92Sa4+YXMIEZ/vNkiud8Q+GdM1C4U3EAKn7r
rwy/jV3Tdfi1G1yrBiv3sH2qw7xOgjBJ5PfNc8tNUax8zx7xb8OJtAt5tU09
3uLIofMB+9HnufUe9R+BDstrTP8Az8/4V7KGla3aEhJIWUgqwzkHqD7Vxh0z
StHuGitrRYvn3hdxIBP16UOfMrMpQszO8TtnVT7ItYWfmrvP7PttQgDSJGc8
cZyKzbvwaWQvZTZcfwMev41pGtF7nJLDSitNTnY2xVqFqptFLbzNDMjJIhwV
YYIqaNua2Odmkr8UVCrfLRQI8fkuZAkTq7KSuCQfSrumTmdzE7Ev1BJ5PtVc
2h8pR6E01LaRHDoSGByCO1O6Ntbm6I8KSfujnJNLp5Ny2YSMZPzH/CobK9md
TBOvDcbgOPxrS0q3FrMzMg2hSMdATSRdzodD1M6ULhgcuy8Z9feuz8K6m7Rs
8nzDOcV5vZ2sjYeT+Lk5712emSER4XACjtUTjc0gzupbw+SZVXI6kKOgrh9V
kj1LV5o7dlMipn3Fbdtq4is5uN+xGZlxyR3rza21Rv7QkugzbgeOe1Z8hpzn
daTPIlqI5wWKjhgBW7pV1NNOqgDHGD2+hFcPp+tQFCJxt3Hsa6fTr2OJCImK
c8NwSKiUS1I1fFehW+sWMl1arjULZMsg6yIO2PUdq82j4Nes6JdFplaQDzF4
LDoR/hXA+KdM/szxDcIi4hlPmx49D2/A5Fa05aWZx14Wd0ZyniimA8UVqYHI
f2YxUAKT9BT10iU/8smrtFt+igKDj0xUgszj+EAjpnvWWp1XRx8eiTHny8fU
1ZXSJY0JbBXqQCa61bMocMB+dP8AsIOFwSPXrRewHPQSIqtnAA/StbSbyJWd
JABjpmsnVITp95sK5VxxVCZ7hIfNAIReorQSN241rZp14DgE5xjqPpXG2MFz
OGkWKVgxyQqkk0GZ76QDkAnkDvWnYtJB8ylyxGAFOD/Opehe4W1o8TgzFkXI
3BgRj2Nd3oFpaRyrKLndkgDL8EHsa4GUzzXn7wSIrDOWFamlXX2Z1UuXj6Z6
YOf8DWctTRHpVsklndgRO5CneoI6gfeXjrxn8q534mzXE8lk9kkxePdv8sEg
A4xnH0NaFnrCSTRqXDsjI69iCDj/AB/OrmmXMRu78yuMRuEXP4nH6ipS1CTS
VzyIavfLwWGR6rRXsk2q6akhDFWPrRV6kc0exzYt125bJ5x171ZjRMBgBn37
f54pflI+RgWxywPQn61Irp8rE9T9AB/XtTuZFTUL2PT41eU5JbCr/WqTa7HK
h+zwOHI6ucD9OtXdW0watbgCURyq2UbHHTvzWNB4ZvlYia6iSNc5cAnFVFxt
qGpl3yfanNxPK3m5zurIvbtlQxlgQRxiu1j0S0Q4Y/aD3yeled6skkGry26c
DzMADsKaak9B7Ghp8IRN38Zq4kRwcdR2FV7dvL24BNaMO1U8xjggfnQ0NMdF
H5u1pZgoTkD+lSGzDMyxyDAP3QOTVAk4AUkY5GBUwvXRspuLduO/+FQ0aJmi
pW3uLeRWAYdQO/HWqUurEu7hyGdiSB64qPVLosgdk2yDAB/z7YrC8w4OR9DT
SIm+hpSamxcnOfq1FZhznjB+uKKqxlc7mbW4wxUEB3PY9PWs648RyqC0UmRj
GCDz9M1z7Ssw6E+h/wDr0EyDCuyKTwBn/wCtT5A5i/J4mvy52yMoI5Kt/wDr
qnJ4jvSmDO6jOcfhVSQBztMnA7VnzWzgMVOfenyhcsy6nqFyCyzOV6fexVBp
5klRnVt3c9ah8+WDCyLj+tWYbxfNUkgnPemlYNzctb1EjVpGwBST6ukjbUbC
9u1Vbm5glRfkAJ61HDFaMwWWIbCeqnBFLQpXNGOZnXhjnHQ1t2WlyahbkrKq
Mv8AfbFQWekaWsSMNQuMH+BcEj8xXQ28XhuBQLiW6fI5Es23H4Lis5M1Rzl/
avCfIlGHBznOQfpWFMJY3MYHOevtXWavf6NLtis4eQNibXJOe3Wsz7EJYVJ+
WTJ4Y8/lTiRM5vzH7LkfQ0VsGylPKqCP9oYNFWZ2LqaRMedwQcA5GBnPT+dT
x+G55QjuoUYJyT64/wDr126m1FuXWDdEyB2O3qehz9MdqmSKBAxODGg4DKRk
k5+o/Gq5hWOCl8MOoARCcn7w7+1V5fDtwgYlDkLnaRyRz/8AW/OvRzCm5I5F
xtIXDAnaep5/EYqZbeP7SGLFcIV5XIwecE9e4HXHFJTHynlf/CO3kilhbrIh
74yaiTwZNMob7MQu4/cznOcYwP5V69BaLIXO5d5GMrk4JPcdccgjJ4H51KsE
ciufOWNVj+Vwo477h+J7envRzhynkcHw91K4d/LMsSocev6fiK04fhlqu8Aa
hApyAQ69M9Mnp+HuK9KmDKy+RC+TglyflHJwQfX6/wD16mgikmMZSaJdoJYk
gsWHGMgf/XqHJlKKPOovhnqzXBR9aiUA4yik8YznH4VswfCiwkPmXWq3kxUE
lUCqT6DGPr+Vd5GrWrKIwXUqxycFwccf1/Sk3MUiXa6MxCsfKJUYIHfvz19v
yV2By8XgvTLBFitLWJSyk72OW47kfhWTc6TdW7yqU/dISCSpPy8dwTnHNegv
GoAizH5oAJBXIkx6jt25z/KmSxGUqhQLGwJYseoBHyj06nii4Hmi2CwqEMg+
uDz+VFehrpNm67sbc9uf6Yopgc2LlYrUSRmQxbifkB6AjBGMce3epLaJkYzf
vGMq/IrEkD2OO+fTPaq9vP5ixIYkMkyEyehVeP6irULLGsZLO4UGRUXAbAA6
9jyfXvVEk6P587xzLtTftUq3PbB9c85okCLbkvviQkBGwxb1HqfQ/nxUT2zz
xqY3O+QCRMSbQo/75PNKpULDtDP5rELliAcj3z2J/OkMekUtvK0cYRkEahGV
dmck9cn0AOetSLd7IxNK25WRdqqBg5ByTnjoCTUkJkkgl+0IglRsAZ47ZGR6
f0qAXm+KGJCFIUAEOxYDjuVPP40ASIjGTz4RDJLLj5mUAEj7v69xU1tciV18
9CSSzHBGBjscY9/z7GkDTm5t5ZZFbBMYC9/XnjuKhUyyWsaxIsJRmXaVVgMk
jHoec+nA96Vh3L3kjc0gmQdAXTGRjv3HrxxxmnXELXksZlOYo1Mu5xtKk579
CMDseuKy7Uu1vb/ZFZImZm25AJHX6etWiyNdC3mQqzyDYoY4Kjk9OnBzz60h
lkyxzweXMpmGMBk3bDkAgkg9MVdF5Daw5TAUL/q26qOg69ecDnFUCUhLkRvJ
wzZUj5SBgcHHBANKpeUCcp5kY3AggHIHPTgYoAtOZWCGWxt7klQVkZl5Htx0
opvn2CRxLDL5ShB8ihgB+GKKBH//2Q==
strict_encode64:
/9j/4AAQSkZJRgABAQEAYABhAAD/4QBARXhpZgAASUkqAAgAAAABAGmHBAABAAAAGgAAAAAAAAACAAKgCQABAAAAZAAAAAOgCQABAAAAfwAAAAAAAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL//gA0T3B0aW1pemVkIGJ5IEpQRUdtaW5pIDMuMTQuMTQuNzI2NzA4NjAgMHhmZjIzZjM3OQD/wAARCAB/AGQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyNj85+tBbFEvE7j0Y/wA6YxrA2HIxJqwp4rS0LwvfayyspWKFj99z1+grvrf4TCSEMLqVzjqu3+VTKSRUYtnmQrS0WTy9Tib0DfyNdNq/wz1WwUvbAyp6MMH/AArl7eKaw1JUuImjdcgq4x2NS2mtCopqSuZkLf6Vdn/ZevR/ADgaHAv/AE9E/qteaQn9/de6NXoHw/c/YLVSetyePxFKrsXT/wAzoPFigaovH/LIfzNYHet/xW2dVHtGP61gfxVqcKLMNXojjFUIzVyI0AaSN8tFRKw2iigDxi9+S8mX0c1b0mxa6nDNGXUnCr/eNPNgbu5aduIzg4HU1oaZdvp16JBErIo2hCe1M3SO20uKGwgVZdW0+G9Yjy4XfcR7EjgfSuv8M6pqc91LZzWitLD1aORQCOxGOoI9K8t1W90vU9k0cM1vMgySuOvpVrwvrM1lqguXnYkptLE9QOgqJQW5tGfQ92Sa4+YXMIEZ/vNkiud8Q+GdM1C4U3EAKn7rrwy/jV3Tdfi1G1yrBiv3sH2qw7xOgjBJ5PfNc8tNUax8zx7xb8OJtAt5tU093uLIofMB+9HnufUe9R+BDstrTP8Az8/4V7KGla3aEhJIWUgqwzkHqD7Vxh0zStHuGitrRYvn3hdxIBP16UOfMrMpQszO8TtnVT7ItYWfmrvP7PttQgDSJGc8cZyKzbvwaWQvZTZcfwMev41pGtF7nJLDSitNTnY2xVqFqptFLbzNDMjJIhwVYYIqaNua2Odmkr8UVCrfLRQI8fkuZAkTq7KSuCQfSrumTmdzE7Ev1BJ5PtVc2h8pR6E01LaRHDoSGByCO1O6Ntbm6I8KSfujnJNLp5Ny2YSMZPzH/CobK9mdTBOvDcbgOPxrS0q3FrMzMg2hSMdATSRdzodD1M6ULhgcuy8Z9feuz8K6m7Rs8nzDOcV5vZ2sjYeT+Lk5712emSER4XACjtUTjc0gzupbw+SZVXI6kKOgrh9Vkj1LV5o7dlMipn3Fbdtq4is5uN+xGZlxyR3rza21Rv7QkugzbgeOe1Z8hpzndaTPIlqI5wWKjhgBW7pV1NNOqgDHGD2+hFcPp+tQFCJxt3Hsa6fTr2OJCImKc8NwSKiUS1I1fFehW+sWMl1arjULZMsg6yIO2PUdq82j4Nes6JdFplaQDzF4LDoR/hXA+KdM/szxDcIi4hlPmx49D2/A5Fa05aWZx14Wd0ZyniimA8UVqYHIf2YxUAKT9BT10iU/8smrtFt+igKDj0xUgszj+EAjpnvWWp1XRx8eiTHny8fU1ZXSJY0JbBXqQCa61bMocMB+dP8AsIOFwSPXrRewHPQSIqtnAA/StbSbyJWdJABjpmsnVITp95sK5VxxVCZ7hIfNAIReorQSN241rZp14DgE5xjqPpXG2MFzOGkWKVgxyQqkk0GZ76QDkAnkDvWnYtJB8ylyxGAFOD/Opehe4W1o8TgzFkXI3BgRj2Nd3oFpaRyrKLndkgDL8EHsa4GUzzXn7wSIrDOWFamlXX2Z1UuXj6Z6YOf8DWctTRHpVsklndgRO5CneoI6gfeXjrxn8q534mzXE8lk9kkxePdv8sEgA4xnH0NaFnrCSTRqXDsjI69iCDj/AB/OrmmXMRu78yuMRuEXP4nH6ipS1CTSVzyIavfLwWGR6rRXsk2q6akhDFWPrRV6kc0exzYt125bJ5x171ZjRMBgBn37f54pflI+RgWxywPQn61Irp8rE9T9AB/XtTuZFTUL2PT41eU5JbCr/WqTa7HKh+zwOHI6ucD9OtXdW0watbgCURyq2UbHHTvzWNB4ZvlYia6iSNc5cAnFVFxtqGpl3yfanNxPK3m5zurIvbtlQxlgQRxiu1j0S0Q4Y/aD3yeled6skkGry26cDzMADsKaak9B7Ghp8IRN38Zq4kRwcdR2FV7dvL24BNaMO1U8xjggfnQ0NMdFH5u1pZgoTkD+lSGzDMyxyDAP3QOTVAk4AUkY5GBUwvXRspuLduO/+FQ0aJmipW3uLeRWAYdQO/HWqUurEu7hyGdiSB64qPVLosgdk2yDAB/z7YrC8w4OR9DTSIm+hpSamxcnOfq1FZhznjB+uKKqxlc7mbW4wxUEB3PY9PWs648RyqC0UmRjGCDz9M1z7Ssw6E+h/wDr0EyDCuyKTwBn/wCtT5A5i/J4mvy52yMoI5Kt/wDrqnJ4jvSmDO6jOcfhVSQBztMnA7VnzWzgMVOfenyhcsy6nqFyCyzOV6fexVBp5klRnVt3c9ah8+WDCyLj+tWYbxfNUkgnPemlYNzctb1EjVpGwBST6ukjbUbC9u1Vbm5glRfkAJ61HDFaMwWWIbCeqnBFLQpXNGOZnXhjnHQ1t2WlyahbkrKqMv8AfbFQWekaWsSMNQuMH+BcEj8xXQ28XhuBQLiW6fI5Es23H4Lis5M1Rzl/avCfIlGHBznOQfpWFMJY3MYHOevtXWavf6NLtis4eQNibXJOe3Wsz7EJYVJ+WTJ4Y8/lTiRM5vzH7LkfQ0VsGylPKqCP9oYNFWZ2LqaRMedwQcA5GBnPT+dTx+G55QjuoUYJyT64/wDr126m1FuXWDdEyB2O3qehz9MdqmSKBAxODGg4DKRkk5+o/Gq5hWOCl8MOoARCcn7w7+1V5fDtwgYlDkLnaRyRz/8AW/OvRzCm5I5FxtIXDAnaep5/EYqZbeP7SGLFcIV5XIwecE9e4HXHFJTHynlf/CO3kilhbrIh74yaiTwZNMob7MQu4/cznOcYwP5V69BaLIXO5d5GMrk4JPcdccgjJ4H51KsEciufOWNVj+Vwo477h+J7envRzhynkcHw91K4d/LMsSocev6fiK04fhlqu8AahApyAQ69M9Mnp+HuK9KmDKy+RC+TglyflHJwQfX6/wD16mgikmMZSaJdoJYkgsWHGMgf/XqHJlKKPOovhnqzXBR9aiUA4yik8YznH4VswfCiwkPmXWq3kxUElUCqT6DGPr+Vd5GrWrKIwXUqxycFwccf1/Sk3MUiXa6MxCsfKJUYIHfvz19vyV2By8XgvTLBFitLWJSyk72OW47kfhWTc6TdW7yqU/dISCSpPy8dwTnHNegvGoAizH5oAJBXIkx6jt25z/KmSxGUqhQLGwJYseoBHyj06nii4Hmi2CwqEMg+uDz+VFehrpNm67sbc9uf6Yopgc2LlYrUSRmQxbifkB6AjBGMce3epLaJkYzfvGMq/IrEkD2OO+fTPaq9vP5ixIYkMkyEyehVeP6irULLGsZLO4UGRUXAbAA69jyfXvVEk6P587xzLtTftUq3PbB9c85okCLbkvviQkBGwxb1HqfQ/nxUT2zzxqY3O+QCRMSbQo/75PNKpULDtDP5rELliAcj3z2J/OkMekUtvK0cYRkEahGVdmck9cn0AOetSLd7IxNK25WRdqqBg5ByTnjoCTUkJkkgl+0IglRsAZ47ZGR6f0qAXm+KGJCFIUAEOxYDjuVPP40ASIjGTz4RDJLLj5mUAEj7v69xU1tciV189CSSzHBGBjscY9/z7GkDTm5t5ZZFbBMYC9/XnjuKhUyyWsaxIsJRmXaVVgMkjHoec+nA96Vh3L3kjc0gmQdAXTGRjv3HrxxxmnXELXksZlOYo1Mu5xtKk579CMDseuKy7Uu1vb/ZFZImZm25AJHX6etWiyNdC3mQqzyDYoY4Kjk9OnBzz60hlkyxzweXMpmGMBk3bDkAgkg9MVdF5Daw5TAUL/q26qOg69ecDnFUCUhLkRvJwzZUj5SBgcHHBANKpeUCcp5kY3AggHIHPTgYoAtOZWCGWxt7klQVkZl5Htx0opvn2CRxLDL5ShB8ihgB+GKKBH//2Q==
urlsafe_encode64:
_9j_4AAQSkZJRgABAQEAYABhAAD_4QBARXhpZgAASUkqAAgAAAABAGmHBAABAAAAGgAAAAAAAAACAAKgCQABAAAAZAAAAAOgCQABAAAAfwAAAAAAAAD_2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL_2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL__gA0T3B0aW1pemVkIGJ5IEpQRUdtaW5pIDMuMTQuMTQuNzI2NzA4NjAgMHhmZjIzZjM3OQD_wAARCAB_AGQDASIAAhEBAxEB_8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL_8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4-Tl5ufo6erx8vP09fb3-Pn6_8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL_8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3-Pn6_9oADAMBAAIRAxEAPwDyNj85-tBbFEvE7j0Y_wA6YxrA2HIxJqwp4rS0LwvfayyspWKFj99z1-grvrf4TCSEMLqVzjqu3-VTKSRUYtnmQrS0WTy9Tib0DfyNdNq_wz1WwUvbAyp6MMH_AArl7eKaw1JUuImjdcgq4x2NS2mtCopqSuZkLf6Vdn_ZevR_ADgaHAv_AE9E_qteaQn9_de6NXoHw_c_YLVSetyePxFKrsXT_wAzoPFigaovH_LIfzNYHet_xW2dVHtGP61gfxVqcKLMNXojjFUIzVyI0AaSN8tFRKw2iigDxi9-S8mX0c1b0mxa6nDNGXUnCr_eNPNgbu5aduIzg4HU1oaZdvp16JBErIo2hCe1M3SO20uKGwgVZdW0-G9Yjy4XfcR7EjgfSuv8M6pqc91LZzWitLD1aORQCOxGOoI9K8t1W90vU9k0cM1vMgySuOvpVrwvrM1lqguXnYkptLE9QOgqJQW5tGfQ92Sa4-YXMIEZ_vNkiud8Q-GdM1C4U3EAKn7rrwy_jV3Tdfi1G1yrBiv3sH2qw7xOgjBJ5PfNc8tNUax8zx7xb8OJtAt5tU093uLIofMB-9HnufUe9R-BDstrTP8Az8_4V7KGla3aEhJIWUgqwzkHqD7Vxh0zStHuGitrRYvn3hdxIBP16UOfMrMpQszO8TtnVT7ItYWfmrvP7PttQgDSJGc8cZyKzbvwaWQvZTZcfwMev41pGtF7nJLDSitNTnY2xVqFqptFLbzNDMjJIhwVYYIqaNua2Odmkr8UVCrfLRQI8fkuZAkTq7KSuCQfSrumTmdzE7Ev1BJ5PtVc2h8pR6E01LaRHDoSGByCO1O6Ntbm6I8KSfujnJNLp5Ny2YSMZPzH_CobK9mdTBOvDcbgOPxrS0q3FrMzMg2hSMdATSRdzodD1M6ULhgcuy8Z9feuz8K6m7Rs8nzDOcV5vZ2sjYeT-Lk5712emSER4XACjtUTjc0gzupbw-SZVXI6kKOgrh9Vkj1LV5o7dlMipn3Fbdtq4is5uN-xGZlxyR3rza21Rv7QkugzbgeOe1Z8hpzndaTPIlqI5wWKjhgBW7pV1NNOqgDHGD2-hFcPp-tQFCJxt3Hsa6fTr2OJCImKc8NwSKiUS1I1fFehW-sWMl1arjULZMsg6yIO2PUdq82j4Nes6JdFplaQDzF4LDoR_hXA-KdM_szxDcIi4hlPmx49D2_A5Fa05aWZx14Wd0ZyniimA8UVqYHIf2YxUAKT9BT10iU_8smrtFt-igKDj0xUgszj-EAjpnvWWp1XRx8eiTHny8fU1ZXSJY0JbBXqQCa61bMocMB-dP8AsIOFwSPXrRewHPQSIqtnAA_StbSbyJWdJABjpmsnVITp95sK5VxxVCZ7hIfNAIReorQSN241rZp14DgE5xjqPpXG2MFzOGkWKVgxyQqkk0GZ76QDkAnkDvWnYtJB8ylyxGAFOD_Opehe4W1o8TgzFkXI3BgRj2Nd3oFpaRyrKLndkgDL8EHsa4GUzzXn7wSIrDOWFamlXX2Z1UuXj6Z6YOf8DWctTRHpVsklndgRO5CneoI6gfeXjrxn8q534mzXE8lk9kkxePdv8sEgA4xnH0NaFnrCSTRqXDsjI69iCDj_AB_OrmmXMRu78yuMRuEXP4nH6ipS1CTSVzyIavfLwWGR6rRXsk2q6akhDFWPrRV6kc0exzYt125bJ5x171ZjRMBgBn37f54pflI-RgWxywPQn61Irp8rE9T9AB_XtTuZFTUL2PT41eU5JbCr_WqTa7HKh-zwOHI6ucD9OtXdW0watbgCURyq2UbHHTvzWNB4ZvlYia6iSNc5cAnFVFxtqGpl3yfanNxPK3m5zurIvbtlQxlgQRxiu1j0S0Q4Y_aD3yeled6skkGry26cDzMADsKaak9B7Ghp8IRN38Zq4kRwcdR2FV7dvL24BNaMO1U8xjggfnQ0NMdFH5u1pZgoTkD-lSGzDMyxyDAP3QOTVAk4AUkY5GBUwvXRspuLduO_-FQ0aJmipW3uLeRWAYdQO_HWqUurEu7hyGdiSB64qPVLosgdk2yDAB_z7YrC8w4OR9DTSIm-hpSamxcnOfq1FZhznjB-uKKqxlc7mbW4wxUEB3PY9PWs648RyqC0UmRjGCDz9M1z7Ssw6E-h_wDr0EyDCuyKTwBn_wCtT5A5i_J4mvy52yMoI5Kt_wDrqnJ4jvSmDO6jOcfhVSQBztMnA7VnzWzgMVOfenyhcsy6nqFyCyzOV6fexVBp5klRnVt3c9ah8-WDCyLj-tWYbxfNUkgnPemlYNzctb1EjVpGwBST6ukjbUbC9u1Vbm5glRfkAJ61HDFaMwWWIbCeqnBFLQpXNGOZnXhjnHQ1t2WlyahbkrKqMv8AfbFQWekaWsSMNQuMH-BcEj8xXQ28XhuBQLiW6fI5Es23H4Lis5M1Rzl_avCfIlGHBznOQfpWFMJY3MYHOevtXWavf6NLtis4eQNibXJOe3Wsz7EJYVJ-WTJ4Y8_lTiRM5vzH7LkfQ0VsGylPKqCP9oYNFWZ2LqaRMedwQcA5GBnPT-dTx-G55QjuoUYJyT64_wDr126m1FuXWDdEyB2O3qehz9MdqmSKBAxODGg4DKRkk5-o_Gq5hWOCl8MOoARCcn7w7-1V5fDtwgYlDkLnaRyRz_8AW_OvRzCm5I5FxtIXDAnaep5_EYqZbeP7SGLFcIV5XIwecE9e4HXHFJTHynlf_CO3kilhbrIh74yaiTwZNMob7MQu4_cznOcYwP5V69BaLIXO5d5GMrk4JPcdccgjJ4H51KsEciufOWNVj-Vwo477h-J7envRzhynkcHw91K4d_LMsSocev6fiK04fhlqu8AahApyAQ69M9Mnp-HuK9KmDKy-RC-TglyflHJwQfX6_wD16mgikmMZSaJdoJYkgsWHGMgf_XqHJlKKPOovhnqzXBR9aiUA4yik8YznH4VswfCiwkPmXWq3kxUElUCqT6DGPr-Vd5GrWrKIwXUqxycFwccf1_Sk3MUiXa6MxCsfKJUYIHfvz19vyV2By8XgvTLBFitLWJSyk72OW47kfhWTc6TdW7yqU_dISCSpPy8dwTnHNegvGoAizH5oAJBXIkx6jt25z_KmSxGUqhQLGwJYseoBHyj06nii4Hmi2CwqEMg-uDz-VFehrpNm67sbc9uf6Yopgc2LlYrUSRmQxbifkB6AjBGMce3epLaJkYzfvGMq_IrEkD2OO-fTPaq9vP5ixIYkMkyEyehVeP6irULLGsZLO4UGRUXAbAA69jyfXvVEk6P587xzLtTftUq3PbB9c85okCLbkvviQkBGwxb1HqfQ_nxUT2zzxqY3O-QCRMSbQo_75PNKpULDtDP5rELliAcj3z2J_OkMekUtvK0cYRkEahGVdmck9cn0AOetSLd7IxNK25WRdqqBg5ByTnjoCTUkJkkgl-0IglRsAZ47ZGR6f0qAXm-KGJCFIUAEOxYDjuVPP40ASIjGTz4RDJLLj5mUAEj7v69xU1tciV189CSSzHBGBjscY9_z7GkDTm5t5ZZFbBMYC9_XnjuKhUyyWsaxIsJRmXaVVgMkjHoec-nA96Vh3L3kjc0gmQdAXTGRjv3HrxxxmnXELXksZlOYo1Mu5xtKk579CMDseuKy7Uu1vb_ZFZImZm25AJHX6etWiyNdC3mQqzyDYoY4Kjk9OnBzz60hlkyxzweXMpmGMBk3bDkAgkg9MVdF5Daw5TAUL_q26qOg69ecDnFUCUhLkRvJwzZUj5SBgcHHBANKpeUCcp5kY3AggHIHPTgYoAtOZWCGWxt7klQVkZl5Htx0opvn2CRxLDL5ShB8ihgB-GKKBH__2Q==
I am trying to create a 3-channel CVOpenGLESTexture in iOS.
I can successfully create a single-channel texture by specifying kCVPixelFormatType_OneComponent8 in CVPixelBufferCreate() and GL_LUMINANCE for both format and internalFormat in CVOpenGLESTextureCacheCreateTextureFromImage().
Similarly, I can successfully create a 4-channel RGBA texture by specifying kCVPixelFormatType_32BGRA in CVPixelBufferCreate() and GL_RGBA for both format and internalFormat in CVOpenGLESTextureCacheCreateTextureFromImage().
I need to create 3-channel, 24-bit, RGB (or BGR) texture with accessible pixels.
I cannot seem to find the correct parameters (or combination thereof) to CVPixelBufferCreate() and CVOpenGLESTextureCacheCreateTextureFromImage() that will not cause either of them to fail.
Additional Info
The supported FOURCC format types reported by CVPixelFormatDescriptionArrayCreateWithAllPixelFormatTypes() on my device:
32, 24, 16, L565, 5551, L555, 2vuy, 2vuf, yuvs, yuvf, 40, L008, L010, 2C08, r408, v408, y408, y416, BGRA, b64a, b48r, b32a, b16g, R10k, v308, v216, v210, v410, r4fl, grb4, rgg4, bgg4, gbr4, 420v, 420f, 411v, 411f, 422v, 422f, 444v, 444f, y420, f420, a2vy, L00h, L00f, 2C0h, 2C0f, RGhA, RGfA, w30r, w40a, w40m, x420, x422, x444, x44p, xf20, xf22, xf44, xf4p, x22p, xf2p, b3a8.
Interestingly, some of these values are not defined in CVPixelBuffer.h.
When I pass kCVPixelFormatType_24RGB (24 == 0x18) to CVPixelBufferCreate() it succeeds, but then CVOpenGLESTextureCacheCreateTextureFromImage() fails with error code -6683:kCVReturnPixelBufferNotOpenGLCompatible.
Answering myself, though I will be happy to be proved wrong and shown how to do this.
As I show here (answering myself yet again) it is possible to list all the fourCC buffer formats supported on the device, and a bunch of format attributes associated with each such fourCC format.
The flags pertinent to this question are:
kCVPixelFormatOpenGLESCompatibility
kCVPixelFormatContainsAlpha : Should be false;
kCVPixelFormatContainsRGB : Note: supported only from __IPHONE_8_0, but not strictly necessary;
Using the debugger, I found another helpful key: CFSTR("IOSurfaceOpenGLESTextureCompatibility") which will verify that the OpenGL ES texture supports direct pixel access with no need for (the slower) glReadPixels() and glTexImage2D().
Unfortunately, using these flags, it seems that there is currently no such RGB/BGR supported format.
I'm trying to figure out how to convert an image from a stream with ImageResizer (http://imageresizing.net/).
I have tried something like this.
Stream s = WebRequest.Create("http://example.com/resources/gfx/unnamed.webp").GetResponse().GetResponseStream();
ImageBuilder.Current.Build(s, "~/resources/gfx/photo3.png", new ResizeSettings("format=png"));
But i just get the error
"File may be corrupted, empty, or may contain a PNG image with a single dimension greater than 65,535 pixels."
When i do
using (Stream output = File.OpenWrite(Server.MapPath("~/resources/gfx/test.webp")))
using (Stream input = WebRequest.Create("http:///example.com/resources/gfx/unnamed.webp").GetResponse().GetResponseStream()) {
input.CopyTo(output);
}
ImageBuilder.Current.Build("~/resources/gfx/test.webp", "~/resources/gfx/photo3.png",
new ResizeSettings("format=png"));
It works fine, am i'm missing something here?
It's possible that 'output' has not been flushed to disk. .NET 4+ doesn't guarantee the file's actually written to disk just because you disposed the stream.
I assume you have the ImageResizer.Plugins.WebP plugin installed?
I am trying to stitch multiple images by using JavaCV 0.1 and OpenCV 2.4.0 in Java, i use this code for stitching images :
stitcher = Stitcher.createDefault(false);
MatVector images = new MatVector(imageN.size());
for(...){
CvArr image = cvLoadImage(imageN);
images.put(index,image);
}
MatVector result = new MatVector(1);
int status = stitcher.stitch(images,result);
if( status == stitcher.OK )
{
cvSaveImage(result.getIplImage(0));
}
NOTE 1 : Loaded images in this example are valid image for stitching.
NOTE 2 : C++ version of the code runs with no problem on current configuration
In stitcher.stitch method opencv throws an assertion exception such as "k == MAT". How should i fix this? Is MatVector usage is right in this sample code?
Thanks...
I found it, it is a bug related with JavaCv.
Actually JavaCv is not guilty.OpenCV stitcher API uses cv::OutputArray for returning stitched image but this method casts cv::OutputArray to cv::Mat when executing. JavaCV ports OpenCV method only by using parameter interface and so it converts the parameter as std::vector, this results as a assertion failure.
It is required to convert std::vector to Mat to make it working. I don't know any other way exist for this conversion but otherwise it is possible to be fixed by only lib's author.
It is said that c++ version is working but in fact, it is working when pano parameter is given as cv::Mat, when std::vector is entered it gives the same failure assertions again.
I have written a program that relies on Magick++ simply for importing and exporting of a wide variety of image formats. It uses Image.getPixels() to get a PixelPacket, does a lot of matrix transformations, then calls Image.syncPixels() before writing a new image. The general approach is the same as the example shown in Magick++'s documentation. More or less, the relevant code is:
Magick::Image image("image01.bmp");
image.modifyImage();
Magick::PixelPacket *imagePixels = image.getPixels(0, 0, 10, 10);
// Matrix manipulation occurs here.
// All actual changes to the PixelPacket direct changes to pixels like so:
imagePixels[i].red = 4; // or any other integer
// finally, after matrix manipulation is done
image.syncPixels();
image.write("image01_transformed.bmp");
When I run the above code, the new image file ("image01_transformed.bmp" in this example) ends up being the same as the original. However, if I write it to a different format, such as "image01_transformed.ppm", I get the correct result: a modified image. I assume this is due to a cached version of the format-encoded image, and that Magick++ is for some reason not aware that the image is actually changed and therefore the cache is out of date. I tested this idea by adding image.blur(1.0, 0.1); immediately before image.syncPixels();, and forcing this inconsequential change did indeed result in the correct result for same-format images.
Is there a way to force Magick++ to realize that the cache is out-of-date? Am I using getPixels() and syncPixels() incorrectly in the first place? Thanks!