Function rotates the template image from 0 to 180 (or upto 360) degrees to search all related matches(in all angles) in source image even with different scale.
The function had been written in OpenCV C interface. When I tried to port it to openCV C++ interface , I am getting lot of errors. Some one please help me to port it to OpenCV C++ interface.
void TemplateMatch()
{
int i, j, x, y, key;
double minVal;
char windowNameSource[] = "Original Image";
char windowNameDestination[] = "Result Image";
char windowNameCoefficientOfCorrelation[] = "Coefficient of Correlation Image";
CvPoint minLoc;
CvPoint tempLoc;
IplImage *sourceImage = cvLoadImage("template_source.jpg", CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR);
IplImage *templateImage = cvLoadImage("template.jpg", CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR);
IplImage *graySourceImage = cvCreateImage(cvGetSize(sourceImage), IPL_DEPTH_8U, 1);
IplImage *grayTemplateImage =cvCreateImage(cvGetSize(templateImage),IPL_DEPTH_8U,1);
IplImage *binarySourceImage = cvCreateImage(cvGetSize(sourceImage), IPL_DEPTH_8U, 1);
IplImage *binaryTemplateImage = cvCreateImage(cvGetSize(templateImage), IPL_DEPTH_8U, 1);
IplImage *destinationImage = cvCreateImage(cvGetSize(sourceImage), IPL_DEPTH_8U, 3);
cvCopy(sourceImage, destinationImage);
cvCvtColor(sourceImage, graySourceImage, CV_RGB2GRAY);
cvCvtColor(templateImage, grayTemplateImage, CV_RGB2GRAY);
cvThreshold(graySourceImage, binarySourceImage, 200, 255, CV_THRESH_OTSU );
cvThreshold(grayTemplateImage, binaryTemplateImage, 200, 255, CV_THRESH_OTSU);
int templateHeight = templateImage->height;
int templateWidth = templateImage->width;
float templateScale = 0.5f;
for(i = 2; i <= 3; i++)
{
int tempTemplateHeight = (int)(templateWidth * (i * templateScale));
int tempTemplateWidth = (int)(templateHeight * (i * templateScale));
IplImage *tempBinaryTemplateImage = cvCreateImage(cvSize(tempTemplateWidth, tempTemplateHeight), IPL_DEPTH_8U, 1);
// W - w + 1, H - h + 1
IplImage *result = cvCreateImage(cvSize(sourceImage->width - tempTemplateWidth + 1, sourceImage->height - tempTemplateHeight + 1), IPL_DEPTH_32F, 1);
cvResize(binaryTemplateImage, tempBinaryTemplateImage, CV_INTER_LINEAR);
float degree = 20.0f;
for(j = 0; j <= 9; j++)
{
IplImage *rotateBinaryTemplateImage = cvCreateImage(cvSize(tempBinaryTemplateImage- >width, tempBinaryTemplateImage->height), IPL_DEPTH_8U, 1);
//cvShowImage(windowNameSource, tempBinaryTemplateImage);
//cvWaitKey(0);
for(y = 0; y < tempTemplateHeight; y++)
{
for(x = 0; x < tempTemplateWidth; x++)
{
rotateBinaryTemplateImage->imageData[y * tempTemplateWidth + x] = 255;
}
}
for(y = 0; y < tempTemplateHeight; y++)
{
for(x = 0; x < tempTemplateWidth; x++)
{
float radian = (float)j * degree * CV_PI / 180.0f;
int scale = y * tempTemplateWidth + x;
int rotateY = - sin(radian) * ((float)x - (float)tempTemplateWidth / 2.0f) + cos(radian) * ((float)y - (float)tempTemplateHeight / 2.0f) + tempTemplateHeight / 2;
int rotateX = cos(radian) * ((float)x - (float)tempTemplateWidth / 2.0f) + sin(radian) * ((float)y - (float)tempTemplateHeight / 2.0f) + tempTemplateWidth / 2;
if(rotateY < tempTemplateHeight && rotateX < tempTemplateWidth && rotateY >= 0 && rotateX >= 0)
rotateBinaryTemplateImage->imageData[scale] = tempBinaryTemplateImage->imageData[rotateY * tempTemplateWidth + rotateX];
}
}
//cvShowImage(windowNameSource, rotateBinaryTemplateImage);
//cvWaitKey(0);
cvMatchTemplate(binarySourceImage, rotateBinaryTemplateImage, result, CV_TM_SQDIFF_NORMED);
//cvMatchTemplate(binarySourceImage, rotateBinaryTemplateImage, result, CV_TM_SQDIFF);
cvMinMaxLoc(result, &minVal, NULL, &minLoc, NULL, NULL);
printf(": %f%%\n", (int)(i * 0.5 * 100), j * 20, (1 - minVal) * 100);
if(minVal < 0.065) // 1 - 0.065 = 0.935 : 93.5%
{
tempLoc.x = minLoc.x + tempTemplateWidth;
tempLoc.y = minLoc.y + tempTemplateHeight;
cvRectangle(destinationImage, minLoc, tempLoc, CV_RGB(0, 255, 0), 1, 8, 0);
}
}
//cvShowImage(windowNameSource, result);
//cvWaitKey(0);
cvReleaseImage(&tempBinaryTemplateImage);
cvReleaseImage(&result);
}
// cvShowImage(windowNameSource, sourceImage);
// cvShowImage(windowNameCoefficientOfCorrelation, result);
cvShowImage(windowNameDestination, destinationImage);
key = cvWaitKey(0);
cvReleaseImage(&sourceImage);
cvReleaseImage(&templateImage);
cvReleaseImage(&graySourceImage);
cvReleaseImage(&grayTemplateImage);
cvReleaseImage(&binarySourceImage);
cvReleaseImage(&binaryTemplateImage);
cvReleaseImage(&destinationImage);
cvDestroyWindow(windowNameSource);
cvDestroyWindow(windowNameDestination);
cvDestroyWindow(windowNameCoefficientOfCorrelation);
}
RESULT :
Template Image:
Result image:
The function above puts rectangles around the perfect matches (angle and scale invariant) in this image .....
Now, I have been trying to port the code into C++ interface. If anyone needs more details please let me know.
C++ Port of above code:
Mat TemplateMatch(Mat sourceImage, Mat templateImage){
double minVal;
Point minLoc;
Point tempLoc;
Mat graySourceImage = Mat(sourceImage.size(),CV_8UC1);
Mat grayTemplateImage = Mat(templateImage.size(),CV_8UC1);
Mat binarySourceImage = Mat(sourceImage.size(),CV_8UC1);
Mat binaryTemplateImage = Mat(templateImage.size(),CV_8UC1);
Mat destinationImage = Mat(sourceImage.size(),CV_8UC3);
sourceImage.copyTo(destinationImage);
cvtColor(sourceImage, graySourceImage, CV_BGR2GRAY);
cvtColor(templateImage, grayTemplateImage, CV_BGR2GRAY);
threshold(graySourceImage, binarySourceImage, 200, 255, CV_THRESH_OTSU );
threshold(grayTemplateImage, binaryTemplateImage, 200, 255, CV_THRESH_OTSU);
int templateHeight = templateImage.rows;
int templateWidth = templateImage.cols;
float templateScale = 0.5f;
for(int i = 2; i <= 3; i++){
int tempTemplateHeight = (int)(templateWidth * (i * templateScale));
int tempTemplateWidth = (int)(templateHeight * (i * templateScale));
Mat tempBinaryTemplateImage = Mat(Size(tempTemplateWidth,tempTemplateHeight),CV_8UC1);
Mat result = Mat(Size(sourceImage.cols - tempTemplateWidth + 1,sourceImage.rows - tempTemplateHeight + 1),CV_32FC1);
resize(binaryTemplateImage,tempBinaryTemplateImage,Size(tempBinaryTemplateImage.cols,tempBinaryTemplateImage.rows),0,0,INTER_LINEAR);
float degree = 20.0f;
for(int j = 0; j <= 9; j++){
Mat rotateBinaryTemplateImage = Mat(Size(tempBinaryTemplateImage.cols, tempBinaryTemplateImage.rows), CV_8UC1);
for(int y = 0; y < tempTemplateHeight; y++){
for(int x = 0; x < tempTemplateWidth; x++){
rotateBinaryTemplateImage.data[y * tempTemplateWidth + x] = 255;
}
}
for(int y = 0; y < tempTemplateHeight; y++){
for(int x = 0; x < tempTemplateWidth; x++){
float radian = (float)j * degree * CV_PI / 180.0f;
int scale = y * tempTemplateWidth + x;
int rotateY = - sin(radian) * ((float)x - (float)tempTemplateWidth / 2.0f) + cos(radian) * ((float)y - (float)tempTemplateHeight / 2.0f) + tempTemplateHeight / 2;
int rotateX = cos(radian) * ((float)x - (float)tempTemplateWidth / 2.0f) + sin(radian) * ((float)y - (float)tempTemplateHeight / 2.0f) + tempTemplateWidth / 2;
if(rotateY < tempTemplateHeight && rotateX < tempTemplateWidth && rotateY >= 0 && rotateX >= 0)
rotateBinaryTemplateImage.data[scale] = tempBinaryTemplateImage.data[rotateY * tempTemplateWidth + rotateX];
}
}
matchTemplate(binarySourceImage, rotateBinaryTemplateImage, result, CV_TM_SQDIFF_NORMED);
minMaxLoc(result, &minVal, 0, &minLoc, 0, Mat());
cout<<(int)(i * 0.5 * 100)<<" , "<< j * 20<<" , "<< (1 - minVal) * 100<<endl;
if(minVal < 0.065){ // 1 - 0.065 = 0.935 : 93.5%
tempLoc.x = minLoc.x + tempTemplateWidth;
tempLoc.y = minLoc.y + tempTemplateHeight;
rectangle(destinationImage, minLoc, tempLoc, CV_RGB(0, 255, 0), 1, 8, 0);
}
}
}
return destinationImage;
}
Related
Right now i am using this code to remove the black borders but i am still left with some black part in most of the cases after using this.
Am i doing something wrong in this ?
void cropImage(const vector<cv::Mat>& input, vector<cv::Mat>& output){
// CHECK(!input.empty());
const int imgWidth = input[0].cols;
const int imgHeight = input[0].rows;
Mat cropMask(imgHeight, imgWidth, CV_32F, Scalar::all(0));
for(auto y=0; y<imgHeight; ++y){
for(auto x=0; x<imgWidth; ++x){
bool has_black = false;
for(auto v=0; v<input.size(); ++v){
if(input[v].at<Vec3b>(y,x) == Vec3b(0,0,0)){
has_black = true;
break;
}
}
if(has_black)
cropMask.at<float>(y,x) = -1000;
else
cropMask.at<float>(y,x) = 1;
}
}
Mat integralImage;
cv::integral(cropMask, integralImage, CV_32F);
Vector4i roi;
//int x11=0,x22=0,y11=0,y22=0;
float optValue = -1000 * imgWidth * imgHeight;
const int stride = 20;
for(auto x1=0; x1<imgWidth; x1+=stride) {
for (auto y1 = 0; y1 < imgHeight; y1+=stride) {
for (auto x2 = x1 + stride; x2 < imgWidth; x2+=stride) {
for (auto y2 = y1 + stride; y2 < imgHeight; y2+=stride) {
float curValue = integralImage.at<float>(y2, x2) +
integralImage.at<float>(y1, x1)
- integralImage.at<float>(y2, x1) -
integralImage.at<float>(y1, x2);
if(curValue > optValue){
optValue = curValue;
roi = Vector4i(x1,y1,x2,y2);
}
}
}
}
}
output.resize(input.size());
for(auto i=0; i<output.size(); ++i){
output[i] = input[i].colRange(roi[0],roi[2]).rowRange(roi[1],
roi[3]).clone();
cv::resize(output[i], output[i], cv::Size(imgWidth, imgHeight));
}
}
Also this code seems to be slow. Is there any fast method to achieve the same ? Thanks in advance.
Here in this code i am detecting a sheet of paper
Steps that i used
1.Apply houghLine transform
2.Detect corner
3.Applied perspective transform.
Please can anybody tell me why the codes is not working on all the images, it only works for one or two images.
it works on this image
but when i used some other image instead of this then i am getting error
#include <cv.h>
#include <highgui.h>
using namespace std;
using namespace cv;
Point2f center(0,0);
Point2f computeIntersect(Vec4i a, Vec4i b)
{
int x1 = a[0], y1 = a[1], x2 = a[2], y2 = a[3], x3 = b[0], y3 = b[1], x4 = b[2], y4 = b[3];
float denom;
if (float d = ((float)(x1 - x2) * (y3 - y4)) - ((y1 - y2) * (x3 - x4)))
{
Point2f pt;
pt.x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d;
pt.y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d;
return pt;
}
else
return Point2f(-1, -1);
}
void sortCorners(vector<Point2f>& corners, Point2f center)
{
vector<Point2f> top, bot;
for (int i = 0; i < corners.size(); i++)
{
if (corners[i].y < center.y)
top.push_back(corners[i]);
else
bot.push_back(corners[i]);
}
corners.clear();
if (top.size() == 2 && bot.size() == 2){
Point2f tl = top[0].x > top[1].x ? top[1] : top[0];
Point2f tr = top[0].x > top[1].x ? top[0] : top[1];
Point2f bl = bot[0].x > bot[1].x ? bot[1] : bot[0];
Point2f br = bot[0].x > bot[1].x ? bot[0] : bot[1];
corners.push_back(tl);
corners.push_back(tr);
corners.push_back(br);
corners.push_back(bl);
}
}
int main()
{
Mat src,cann,hsv;
src = imread("C:\\im.jpg",WINDOW_AUTOSIZE);
if (src.empty())
return -1;
imshow("original",src);
blur(src, src, Size(3, 3));
Canny(src, cann, 50, 200, 3);
cvtColor(cann, hsv, CV_GRAY2BGR);
vector<Vec4i> lines;
HoughLinesP(cann, lines, 1, CV_PI/180, 70, 30, 10);
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
line( hsv, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 2, CV_AA);
}
// Expand the lines
for (int i = 0; i < lines.size(); i++)
{
Vec4i v = lines[i];
lines[i][0] = 0;
lines[i][1] = ((float)v[1] - v[3]) / (v[0] - v[2]) * -v[0] + v[1];
lines[i][2] = src.cols;
lines[i][3] = ((float)v[1] - v[3]) / (v[0] - v[2]) * (src.cols - v[2]) + v[3];
}
vector<Point2f> corners;
for (int i = 0; i < lines.size(); i++)
{
for (int j = i+1; j < lines.size(); j++)
{
Point2f pt = computeIntersect(lines[i], lines[j]);
if (pt.x >= 0 && pt.y >= 0)
corners.push_back(pt);
}
}
vector<Point2f> approx;
approxPolyDP(Mat(corners), approx, arcLength(Mat(corners), true) * 0.02, true);
//if (approx.size() != 4)
// {
// cout << "The object is not quadrilateral!" << endl;
//return -1;
//}
// Get mass center
for (int i = 0; i < corners.size(); i++)
center += corners[i];
center *= (1. / corners.size());
sortCorners(corners, center);
if (corners.size() == 0)
{
cout << "The corners were not sorted correctly!" << endl;
return -1;
}
Mat dst = src.clone();
// Draw lines
for (int i = 0; i < lines.size(); i++)
{
Vec4i v = lines[i];
line(dst, Point(v[0], v[1]), Point(v[2], v[3]), CV_RGB(0,255,0));
}
// Draw corner points
circle(dst, corners[0], 3, CV_RGB(255,0,0), 2);
circle(dst, corners[1], 3, CV_RGB(0,255,0), 2);
circle(dst, corners[2], 3, CV_RGB(0,0,255), 2);
circle(dst, corners[3], 3, CV_RGB(255,255,255), 2);
// Draw mass center
circle(dst, center, 3, CV_RGB(255,255,0), 2);
Mat quad = Mat::zeros(300, 220, CV_8UC3);
vector<Point2f> quad_pts;
quad_pts.push_back(Point2f(0, 0));
quad_pts.push_back(Point2f(quad.cols, 0));
quad_pts.push_back(Point2f(quad.cols, quad.rows));
quad_pts.push_back(Point2f(0, quad.rows));
Mat transmtx = getPerspectiveTransform(corners, quad_pts);
warpPerspective(src, quad, transmtx, quad.size());
imshow("blurr",src);
imshow("canney",cann);
imshow("hough",hsv);
imshow("image", dst);
imshow("quadrilateral", quad);
waitKey(0);
return 0;
}
Can anyone help me with this problem, how to do flipping of an image without using the inbuilt flipping function i.e. flip(src image, destination image , 1 or 0) in C++ using OpenCV. I am new to this software so please help.
OpenCV's flip function uses internal flipHoriz or flipVert functions.
static void
flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size, size_t esz )
{
int i, j, limit = (int)(((size.width + 1)/2)*esz);
AutoBuffer<int> _tab(size.width*esz);
int* tab = _tab;
for( i = 0; i < size.width; i++ )
for( size_t k = 0; k < esz; k++ )
tab[i*esz + k] = (int)((size.width - i - 1)*esz + k);
for( ; size.height--; src += sstep, dst += dstep )
{
for( i = 0; i < limit; i++ )
{
j = tab[i];
uchar t0 = src[i], t1 = src[j];
dst[i] = t1; dst[j] = t0;
}
}
}
static void
flipVert( const uchar* src0, size_t sstep, uchar* dst0, size_t dstep, Size size, size_t esz )
{
const uchar* src1 = src0 + (size.height - 1)*sstep;
uchar* dst1 = dst0 + (size.height - 1)*dstep;
size.width *= (int)esz;
for( int y = 0; y < (size.height + 1)/2; y++, src0 += sstep, src1 -= sstep,
dst0 += dstep, dst1 -= dstep )
{
int i = 0;
if( ((size_t)src0|(size_t)dst0|(size_t)src1|(size_t)dst1) % sizeof(int) == 0 )
{
for( ; i <= size.width - 16; i += 16 )
{
int t0 = ((int*)(src0 + i))[0];
int t1 = ((int*)(src1 + i))[0];
((int*)(dst0 + i))[0] = t1;
((int*)(dst1 + i))[0] = t0;
t0 = ((int*)(src0 + i))[1];
t1 = ((int*)(src1 + i))[1];
((int*)(dst0 + i))[1] = t1;
((int*)(dst1 + i))[1] = t0;
t0 = ((int*)(src0 + i))[2];
t1 = ((int*)(src1 + i))[2];
((int*)(dst0 + i))[2] = t1;
((int*)(dst1 + i))[2] = t0;
t0 = ((int*)(src0 + i))[3];
t1 = ((int*)(src1 + i))[3];
((int*)(dst0 + i))[3] = t1;
((int*)(dst1 + i))[3] = t0;
}
for( ; i <= size.width - 4; i += 4 )
{
int t0 = ((int*)(src0 + i))[0];
int t1 = ((int*)(src1 + i))[0];
((int*)(dst0 + i))[0] = t1;
((int*)(dst1 + i))[0] = t0;
}
}
for( ; i < size.width; i++ )
{
uchar t0 = src0[i];
uchar t1 = src1[i];
dst0[i] = t1;
dst1[i] = t0;
}
}
}
// you can use it with a small modification as below
void myflip( InputArray _src, OutputArray _dst, int flip_mode )
{
CV_Assert( _src.dims() <= 2 );
Size size = _src.size();
if (flip_mode < 0)
{
if (size.width == 1)
flip_mode = 0;
if (size.height == 1)
flip_mode = 1;
}
if ((size.width == 1 && flip_mode > 0) ||
(size.height == 1 && flip_mode == 0) ||
(size.height == 1 && size.width == 1 && flip_mode < 0))
{
return _src.copyTo(_dst);
}
Mat src = _src.getMat();
int type = src.type();
_dst.create( size, type );
Mat dst = _dst.getMat();
size_t esz = CV_ELEM_SIZE(type);
if( flip_mode <= 0 )
flipVert( src.ptr(), src.step, dst.ptr(), dst.step, src.size(), esz );
else
flipHoriz( src.ptr(), src.step, dst.ptr(), dst.step, src.size(), esz );
if( flip_mode < 0 )
flipHoriz( dst.ptr(), dst.step, dst.ptr(), dst.step, dst.size(), esz );
}
Assuming you have a good reason not to use OpenCV flip function, you can write your custom one.
For this example, I'll use CV_8UC3 images. I'll point out at the end how to expand this to different formats.
Let's see first how to flip an image x axis, which corresponds to cv::flip(src, dst, 1). Given an src image, the dst image will have the same y coordinate, and x coordinate as src.cols - 1 - x coordinates. In practice:
void flip_lr(const Mat3b& src, Mat3b& dst)
{
Mat3b _dst(src.rows, src.cols);
for (int r = 0; r < _dst.rows; ++r) {
for (int c = 0; c < _dst.cols; ++c) {
_dst(r, c) = src(r, src.cols - 1 - c);
}
}
dst = _dst;
}
Then, to flip around y axis (corresponding to cv::flip(src, dst, 0)), dst will have the same x coordinate, and y as src.rows - 1 - y. However, you can reuse the above-mentioned function, simply transposing the dst matrix, apply flip on x axis, and then transpose back. In practice:
dst = src.t();
flip_lr(dst, dst);
dst = dst.t();
Then, to flip both axis, corresponding to cv::flip(src, dst, -1), you need simply to combine the flip on x and y axis:
flip_lr(src, dst);
dst = dst.t();
flip_lr(dst, dst);
dst = dst.t();
You can wrap this functionality in a custom flip function that takes the same parameters as cv::flip:
void custom_flip(const Mat3b& src, Mat3b& dst, int code)
{
if (code > 0)
{ // Flip x axis
flip_lr(src, dst);
}
else if (code == 0)
{
// Flip y axis
dst = src.t();
flip_lr(dst, dst);
dst = dst.t();
}
else // code < 0
{
// Flip x and y axis
flip_lr(src, dst);
dst = dst.t();
flip_lr(dst, dst);
dst = dst.t();
}
}
Note that you can adapt this to different format simply modifing the flip_lr function, and taking care to call the appropriate version inside custom_flip, that will now accept Mat instead of Mat3b.
Full code for reference:
void flip_lr(const Mat3b& src, Mat3b& dst)
{
Mat3b _dst(src.rows, src.cols);
for (int r = 0; r < _dst.rows; ++r) {
for (int c = 0; c < _dst.cols; ++c) {
_dst(r, c) = src(r, src.cols - 1 - c);
}
}
dst = _dst;
}
void custom_flip(const Mat3b& src, Mat3b& dst, int code)
{
if (code > 0)
{ // Flip x axis
flip_lr(src, dst);
}
else if (code == 0)
{
// Flip y axis
dst = src.t();
flip_lr(dst, dst);
dst = dst.t();
}
else // code < 0
{
// Flip x and y axis
flip_lr(src, dst);
dst = dst.t();
flip_lr(dst, dst);
dst = dst.t();
}
}
int main(void)
{
Mat3b img = imread("path_to_image");
Mat3b flipped;
flip(img, flipped, -1);
Mat3b custom;
custom_flip(img, custom, -1);
imshow("OpenCV flip", flipped);
imshow("Custom flip", custom);
waitKey();
return 0;
}
I am using Aptina 5Mp sensor with Fish-eye lens for capturing an image.
I am using following algorithm to correct lens distortion.
http://www.tannerhelland.com/4743/simple-algorithm-correcting-lens-distortion/
this is not correcting the image properly.
Any help will be appreciated.
//code----
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <stdio.h>
#include <math.h>
using namespace cv;
using namespace std;
// globals
Mat src, dst;
Mat map_x, map_y;
#define REMAP_WINDOW "Remap Circle"
void make_circle_map(float , float , float , float );
int main(int argc, char** argv) {
// load image
src = imread(argv[1], 1);
float qvDepth = atof(argv[2]);
float fixStrength = atof(argv[3]);
float fixZoom = atof(argv[4]);
float lensRadius = atof(argv[5]);
// create destination and the maps
dst.create(src.size(), src.type());
map_x.create(src.size(), CV_32FC1);
map_y.create(src.size(), CV_32FC1);
// create window
// namedWindow(REMAP_WINDOW, CV_WINDOW_AUTOSIZE);
make_circle_map(qvDepth, fixStrength, fixZoom, lensRadius);
remap(src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0));
//imshow(REMAP_WINDOW, dst);
imwrite("got1.jpg",dst);
// while(27 != waitKey()) {
// just wait
// }
// cvDestroyWindow(REMAP_WINDOW);
return 0;
}
void make_circle_map(float qvDepth, float fixStrength, float fixZoom, float lensRadius ) {
//ApplyLensCorrection(double fixStrength, double fixZoom, double lensRadius, long long edgeHandling, long long superSamplingAmount
cout<<"qvDepth :"<<qvDepth<<" fixStrength :"<<fixStrength<<" fixZoom :"<<fixZoom<<" lensRadius :"<<lensRadius<<endl;
//float qvDepth = 32;//24;
//float fixStrength = 4.5; // has to utilized further
//float fixZoom = 0.5;
//float lensRadius =2;
//Calculate the center of the image
//double midX = 0;
//double midY = 0;
long tWidth = 1944;
long tHeight = 2580;
// the center
double midX = (double)src.cols/2;
double midY = (double)src.rows/2;
//Rotation values
double theta = 0;
double sRadius = 0;
double sRadius2 = 0;
double sDistance = 0;
double radius = 0;
double j = 0;
double k = 0;
//X and Y values, remapped around a center point of (0, 0)
double nX = 0;
double nY = 0;
double QuickVal =0;
float ssX;
float ssY;
//Source X and Y values, which may or may not be used as part of a bilinear interpolation function
double srcX = 0;
double srcY = 0;
sRadius = sqrt(tWidth * tWidth + tHeight * tHeight) / 2;
cout<<"sRadius :"<<sRadius<<endl;
double refDistance = 0;//modified 0 to 2
if (fixStrength == 0)
{
fixStrength = 0.00000001;
}
refDistance = sRadius * 2 / fixStrength;
sRadius = sRadius * (lensRadius / 100);
sRadius2 = sRadius * sRadius;
cout<<"refDistance :"<<refDistance<<" sRadius :"<<sRadius<<" sRadius2 :"<<sRadius2<<endl;
float sampleIndex =1; //has to be changed in future
for (int x = 0; x <= tWidth; x++)
{
QuickVal = x * qvDepth;
for (int y = 0; y <= tHeight; y++)
{
//Remap the coordinates around a center point of (0, 0)
nX = x - midX;
nY = y - midY;
//Offset the pixel amount by the supersampling lookup table
for(int ii = 1; ii<4;ii++){
j = nX + ii;
k = nY + ii;
//Calculate distance automatically
sDistance = (j * j) + (k * k);
//cout<<"nx :"<<nX<<" ny :"<<nY<<" j :"<<j<<" k :"<<k<<" sDistance :"<<sDistance<<" sRadius2 :"<<sRadius2<<endl;
if (sDistance <= sRadius2)
{
sDistance = sqrt(sDistance);
radius = sDistance / refDistance;
if (radius == 0)
{
theta = 1;
}
else
{
theta = atan(radius) / radius;
}
//srcX = midX + theta * j * fixZoom;
//srcY = midY + theta * k * fixZoom;
map_x.at<float>(x,y) = midX + cos(fabs(theta)) * j * fixZoom;
map_y.at<float>(x,y) = midY + sin(fabs(theta)) * k * fixZoom;
}
else
{
map_x.at<float>(x,y) = x + cos(fabs(theta)) ;//* fixZoom;//x;
map_y.at<float>(x,y) = y + sin(fabs(theta)) ;//* fixZoom;//y;
}
}
}
}
}
Image
replace the following line.
map_x.at<float>(x,y) = midX + theta * j * fixZoom;
map_y.at<float>(x,y) = midY + theta * k * fixZoom;
}
else
{
map_x.at<float>(x,y) = x ;//* fixZoom;//x;
map_y.at<float>(x,y) = y ;//* fixZoom;//y;
use argument executable [image name], BBP, correction parameter, zoom parameter, applied ratio.
ex-> ./lensdistortcorrect image.jpg 24 6.2 2.2 100
Currently i m capturing the screen using the glreadpixels(). the image captured is generally mirrored image hence i flipped back the image to normal.
Now i want to rotate the captured data (image) by 90'degree.
any idea how to do that ?
The code i m using to capture the screen data is :
CGRect screenBounds = [[UIScreen mainScreen] bounds];
int backingWidth = screenBounds.size.width;
int backingHeight =screenBounds.size.height;
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_WIDTH_OES, &backingWidth);
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_HEIGHT_OES, &backingHeight);
NSInteger myDataLength = backingWidth * backingHeight * 4;
GLuint *buffer;
if((buffer= (GLuint *) malloc(myDataLength)) == NULL )
NSLog(#"error initializing the buffer");
glReadPixels(0, 0, backingWidth, backingHeight, GL_RGBA, GL_UNSIGNED_BYTE, buffer);
// code for flipping back (mirroring the image data)
for(int y = 0; y < backingHeight / 2; y++) {
for(int xt = 0; xt < backingWidth; xt++) {
GLuint top = buffer[y * backingWidth + xt];
GLuint bottom = buffer[(backingHeight - 1 - y) * backingWidth + xt];
buffer[(backingHeight - 1 - y) * backingWidth + xt] = top;
buffer[y * backingWidth + xt] = bottom;
}
}
Any idea how to rotate the data captured in buffer by 90'degree ?
Thanks
size_t at (size_t x, size_t y, size_t width)
{
return y*width + x;
}
void rotate_90_degrees_clockwise (
const pixel * in,
size_t in_width,
size_t in_height,
pixel * out)
{
for (size_t x = 0; x < in_width; ++x) {
for (size_t y = 0; y < in_height; ++i)
out [at (in_height-y, in_width-x, in_height)]
= in [at (x, y, in_width)];
}
}
Sometimes, nothing beats a minute with pencil-and-paper :-)
This could be optimised, if you maintain x_in and y_in versus x_out and y_out -- incrementing one and decrementing the other -- and by cacheing x in between the loops, but this is the basic idea.
k finally i figured out the whole thing. For others who want to do the same here are the codes for rotating the image from pixel data by 90 degree, 180 degree, 270 degree resp:-
// Rotate 90
// height and width specifies corresponding height and width of image
for (int h = 0, dest_col = height - 1; h < height; ++h, --dest_col)
{
for (int w = 0; w < width; w++)
{
dest[(w * height) + dest_col] = source[h*width + w];
}
}
// Rotate 180
for (int h=0, dest_row=(height-1); h < height; --dest_row, ++h)
{
for (int w=0, dest_col=(width-1); w < width; ++w, --dest_col)
{
dest[dest_row * width + dest_col] = source[h*width + w];
}
}
// Rotate 270
for (int h = 0, dest_col=0; h < height; ++dest_col, ++h)
{
for (int w=0, dest_row=width-1; w < width; --dest_row, ++w)
{
dest[(dest_row * height) + dest_col] = source[h * width + w];
}
}