Why do we convert from RGB to HSV - opencv

I have a image and i want to detect a blue rectange in it. My teacher told me that:
convert it to HSV color model
define a thresh hold to make it become a binary image with the color we want to detect
So why do we do that ? why don't we direct thresh hold the rgb image ?
thanks for answer

You can find the answer to your question here
the basic summary is that HSV is better for object detection,
OpenCV usually captures images and videos in 8-bit, unsigned integer, BGR format. In other words, captured images can be considered as 3 matrices, BLUE,RED and GREEN with integer values ranges from 0 to 255.
How BGR image is formed
In the above image, each small box represents a pixel of the image. In real images, these pixels are so small that human eye cannot differentiate.
Usually, one can think that BGR color space is more suitable for color based segmentation. But HSV color space is the most suitable color space for color based image segmentation. So, in the above application, I have converted the color space of original image of the video from BGR to HSV image.
HSV color space is consists of 3 matrices, 'hue', 'saturation' and 'value'. In OpenCV, value range for 'hue', 'saturation' and 'value' are respectively 0-179, 0-255 and 0-255. 'Hue' represents the color, 'saturation' represents the amount to which that respective color is mixed with white and 'value' represents the amount to which that respective color is mixed with black.

According to http://en.wikipedia.org/wiki/HSL_and_HSV#Use_in_image_analysis :
Because the R, G, and B components of an object’s color in a digital image are all correlated with the amount of light hitting the object, and therefore with each other, image descriptions in terms of those components make object discrimination difficult. Descriptions in terms of hue/lightness/chroma or hue/lightness/saturation are often more relevant.
Also some good info here

The HSV color space abstracts color (hue) by separating it from saturation and pseudo-illumination. This makes it practical for real-world applications such as the one you have provided.

R, G, B in RGB are all co-related to the color luminance( what we loosely call intensity),i.e., We cannot separate color information from luminance. HSV or Hue Saturation Value is used to separate image luminance from color information. This makes it easier when we are working on or need luminance of the image/frame. HSV also used in situations where color description plays an integral role.
Cheers

Related

Converting colored image to grayscale

I am working on processing images that consists of colors that have the same grayscale. In other words, each image is colored with random colors that have the same gray value.
When I converted the image using (rgb2grey() from skimage or cv2.cvtColor() from OpenCV), the resulted image has only one gray value (or slightly difference gray values (unperceivable by human eyes). Therefore, the resulted image details unrecognizable.
My questions are:
What are the best way to do before converting these images to grayscale ones? (Please note the colors of these images are not fixed)
Are there any color combinations for which the color-gray conversion algorithms won't work?
How about using YCbCr?
Y is intensity, Cb is the blue component relative to the green component and Cr is the red component relative to the green component.
So I think YCbCr can differentiate between multiple pixels with same grayscale value.

GPUImage Histogram Equalization

I would like to use GPUImage's Histogram Equalization filter (link to .h) (link to .m) for a camera app. I'd like to use it in real time and present it as an option to be applied on the live camera feed. I understand this may be an expensive operation and cause some latency.
I'm confused about how this filter works. When selected in GPUImage's example project (Filter Showcase) the filter shows a very dark image that is biased toward red and blue which does not seem to be the way equalization should work.
Also what is the difference between the histogram types kGPUImageHistogramLuminance and kGPUImageHistogramRGB? Filter Showcase uses kGPUImageHistogramLuminance but the default in the init is kGPUImageHistogramRGB. If I switch Filter Showcase to kGPUImageHistogramRGB, I just get a black screen. My goal is an overall contrast optimization.
Does anyone have experience using this filter? Or are there current limitations with this filter that are documented somewhere?
Histogram equalization of RGB images is done using the Luminance as equalizing the RGB channels separately would render the colour information useless.
You basically convert RGB to a colour space that separates colour from intensity information. Then equalize the intensity image and finally reconvert it to RGB.
According to the documentation: http://oss.io/p/BradLarson/GPUImage
GPUImageHistogramFilter: This analyzes the incoming image and creates
an output histogram with the frequency at which each color value
occurs. The output of this filter is a 3-pixel-high, 256-pixel-wide
image with the center (vertical) pixels containing pixels that
correspond to the frequency at which various color values occurred.
Each color value occupies one of the 256 width positions, from 0 on
the left to 255 on the right. This histogram can be generated for
individual color channels (kGPUImageHistogramRed,
kGPUImageHistogramGreen, kGPUImageHistogramBlue), the luminance of the
image (kGPUImageHistogramLuminance), or for all three color channels
at once (kGPUImageHistogramRGB).
I'm not very familiar with the programming language used so I can't tell if the implementation is correct. But in the end, colours should not change too much. Pixels should just become brighter or darker.

Should I use HSV/HSB or RGB and why?

I have to detect leukocytes cells in an image that contains another blood cells, but the differences can be distinguished through the color of cells, leukocytes have more dense purple color, can be seen in the image below.
What color methode I've to use RGB/HSV ? and why ?!
sample image:
Usually when making decisions like this I just quickly plot the different channels and color spaces and see what I find. It is always better to start with a high quality image than to start with a low one and try to fix it with lots of processing
In this specific case I would use HSV. But unlike most color segmentation I would actually use the Saturation Channel to segment the images. The cells are nearly the same Hue so using the hue channel would be very difficult.
hue, (at full saturation and full brightness) very hard to differentiate cells
saturation huge contrast
Green channel, actually shows a lot of contrast as well (it surprised me)
the red and blue channels are hard to actually distinguish the cells.
Now that we have two candidate representations the saturation or the Green channel, we ask which is easier to work with? Since any HSV work involves us converting the RGB image, we can dismiss it, so the clear choice is to simply use the green channel of the RGB image for segmentation.
edit
since you didn't include a language tag I would like to attach some Matlab code I just wrote. It displays an image in all 4 color spaces so you can quickly make an informed decision on which to use. It mimics matlabs Color Thresholder colorspace selection window
function ViewColorSpaces(rgb_image)
% ViewColorSpaces(rgb_image)
% displays an RGB image in 4 different color spaces. RGB, HSV, YCbCr,CIELab
% each of the 3 channels are shown for each colorspace
% the display mimcs the New matlab color thresholder window
% http://www.mathworks.com/help/images/image-segmentation-using-the-color-thesholder-app.html
hsvim = rgb2hsv(rgb_image);
yuvim = rgb2ycbcr(rgb_image);
%cielab colorspace
cform = makecform('srgb2lab');
cieim = applycform(rgb_image,cform);
figure();
%rgb
subplot(3,4,1);imshow(rgb_image(:,:,1));title(sprintf('RGB Space\n\nred'))
subplot(3,4,5);imshow(rgb_image(:,:,2));title('green')
subplot(3,4,9);imshow(rgb_image(:,:,3));title('blue')
%hsv
subplot(3,4,2);imshow(hsvim(:,:,1));title(sprintf('HSV Space\n\nhue'))
subplot(3,4,6);imshow(hsvim(:,:,2));title('saturation')
subplot(3,4,10);imshow(hsvim(:,:,3));title('brightness')
%ycbcr / yuv
subplot(3,4,3);imshow(yuvim(:,:,1));title(sprintf('YCbCr Space\n\nLuminance'))
subplot(3,4,7);imshow(yuvim(:,:,2));title('blue difference')
subplot(3,4,11);imshow(yuvim(:,:,3));title('red difference')
%CIElab
subplot(3,4,4);imshow(cieim(:,:,1));title(sprintf('CIELab Space\n\nLightness'))
subplot(3,4,8);imshow(cieim(:,:,2));title('green red')
subplot(3,4,12);imshow(cieim(:,:,3));title('yellow blue')
end
you could call it like this
rgbim = imread('http://i.stack.imgur.com/gd62B.jpg');
ViewColorSpaces(rgbim)
and the display is this
in DIP and CV is this always a valid question
But it has no universal answer because each task is unique so use what is better suited for it. To choose correctly you need to know the pros/cons of each so here is some summary:
RGB
this is easy to handle and you can easyly access r,g,b bands. For many cases is better to check just single band instead of whole color or mix the colors to emphasize wanted feature or even dampening unwanted one. It is hard to compare colors in RGB due to intensity encoded into bands directly. To remedy that you can use normalization but that is slow (need per pixel sqrt). You can do arithmetics on RGB colors directly.
Example of task better suited for RGB:
finding horizont in high altitude photo
HSV
is better suited for color recognition because CV algorithms using HSV has very similar visual perception to human perception so if you want to recognize areas of distinct colors HSV is better. The conversion between RGB/HSV takes a bit of time which can be for big resolutions or hi fps apps a problem. For standard DIP/CV tasks is this usually not the case.
Example of task better suited for HSV:
Compare RGB colors
Take a look at:
HSV histogram
to see the distinct color separation in HSV. The segmentation of image based on color is easy on HSV. You can not do arithmetics on HSV colors directly instead need to convert to RGB and back

OpenCv: Get over lightness affect on the color histogram

I'm using OpenCv. For the purpose of comparison, I have to fetch data about the color histogram of an image.
In detail, I have a large amount of images which I organize into many sub sets, each sub sets consists of a group of similar images. My destination is to be able to get a new image and determine the sub set it belongs to, based on color similarity.
Now, I know how to build the histogram of an image, but my problem is how to decrease as much as possible the affect of the image's lightness on the color histogram. I have thought about using cvEqualizeHist() before calculating the histogram, but since I'm pretty new in OpenCv I'm not sure what the best way is.
Any advise is very appreciated,
Transform your image from RGB to HSV color space using cvtColor() with CV_BGR2HSV or CV_RGB2HSV option. H, S and V stands for Hue, Saturation and Intensity respectively. Use color histograms in this HSV space and use only a couple of bins for V channel.

How can I generate multiple shades from a given base color?

I'd like design a chart and set the colors
from a single exemplar. Same way as in Excel's:
Is there some sort of a formula or algorithm to
generate the next shade of color from a given
shade or color?
That looks to me like they just took the same hue (basic color) and turned the brightness up and down. That can be done easily enough with a HSL or HSV transformations. Check Wikipedia for HSL and HSV color spaces to get some understanding of the theory involved.
Basic idea: Computers represent color with a mixture of red intensity, green intensity and blue intensity, called RGB, because that's the way the screen displays color. HSL (Hue, Saturation, Lightness) and HSV (Hue, Saturation, Value) are two alternative models for representing color that are more intuitive and closer to the way human beings tend to think about how colors look.
Hue is the basic color, represented (more or less) as an angle on a color wheel. Saturation is a linear value, from 0 (gray) to 255 (bright, vibrant color). And Lightness/Value represent brightness, from 0 (black) to 100 (white).
The algorithms to transform from RGB -> HSL and HSL -> RGB (or HSV instead of HSL) are pretty straightforward. Try transforming your color to HS*, adjusting the brightness, and transforming back. By taking several different brightness values from low to high, and arranging them as wedges in a pie chart, you can duplicate that picture pretty easily.
Look into the HSV colour space. Using it you can produce different shades or tints starting from a given colour. There is a page with Pascal / Delphi code for conversion between RGB and HSV at efg's Computer Lab.
Roderick , the #mghie links are great to start, additionally try out the Colorlib Delphi Library , wich lets you convert between color models as well as HTML color conversion utilities. is very complete, full source code included and freeware ;).
check the demo application , in this image you can see a blue pallete generated using this library.

Resources