Breaking A* admissibility caused exponential speed-up? - a-star

I've been working on a generalized version of the sliding tile puzzle where the tiles do not have numbers. Instead, each location either has a tile or a hole and is represented with a boolean as true or false (tile or hole).
The point of the search is to take an initial state with n tiles and a goal state with n target locations and use A* to find the solution of how to move the tiles so that every target location is populated. Here is an example below for a 4x3 grid:
Initial State:
T F T F
F F T F
F F T T
Goal State
T T T T
T F F F
F F F F
I had been working on different heuristics to do this and the most successful had a logic that went something like this:
int heuristicVal = 0
for every tile (i)...
int closest = infinity
for every goal location (j)...
if (manhattan distance of ij < closest) closest = manhattan distance of ij
end for
heuristicVal += closest
end for
return heuristicVal
Unfortunately, this was still too slow in situations where two or more tiles were being guided by the heuristic to the same target location. I tried multiplying heuristicVal by the number of tiles and suddenly there was an exponential speed-up. Problems that were taking 28 seconds before were taking less than 1 second.
Edit: It turns out it is not always producing optimal solutions after all with this change. However, I don't understand why it sped up so much or why it is still finding the correct (although suboptimal) answer despite no longer being admissible.

If you break admissability, A* no longer works correctly. Note that no longer works correctly doesn't mean you're never gonna get an optimal result - you're just no longer guaranteed to get one. You can also end up converging faster on solution, but what's the point if that solution is not the right one?

Related

Performing an "online" linear interpolation

I have a problem where I need to do a linear interpolation on some data as it is acquired from a sensor (it's technically position data, but the nature of the data doesn't really matter). I'm doing this now in matlab, but since I will eventually migrate this code to other languages, I want to keep the code as simple as possible and not use any complicated matlab-specific/built-in functions.
My implementation initially seems OK, but when checking my work against matlab's built-in interp1 function, it seems my implementation isn't perfect, and I have no idea why. Below is the code I'm using on a dataset already fully collected, but as I loop through the data, I act as if I only have the current sample and the previous sample, which mirrors the problem I will eventually face.
%make some dummy data
np = 109; %number of data points for x and y
x_data = linspace(3,98,np) + (normrnd(0.4,0.2,[1,np]));
y_data = normrnd(2.5, 1.5, [1,np]);
%define the query points the data will be interpolated over
qp = [1:100];
kk=2; %indexes through the data
cc = 1; %indexes through the query points
qpi = qp(cc); %qpi is the current query point in the loop
y_interp = qp*nan; %this will hold our solution
while kk<=length(x_data)
kk = kk+1; %update the data counter
%perform online interpolation
if cc<length(qp)-1
if qpi>=y_data(kk-1) %the query point, of course, has to be in-between the current value and the next value of x_data
y_interp(cc) = myInterp(x_data(kk-1), x_data(kk), y_data(kk-1), y_data(kk), qpi);
end
if qpi>x_data(kk), %if the current query point is already larger than the current sample, update the sample
kk = kk+1;
else %otherwise, update the query point to ensure its in between the samples for the next iteration
cc = cc + 1;
qpi = qp(cc);
%It is possible that if the change in x_data is greater than the resolution of the query
%points, an update like the above wont work. In this case, we must lag the data
if qpi<x_data(kk),
kk=kk-1;
end
end
end
end
%get the correct interpolation
y_interp_correct = interp1(x_data, y_data, qp);
%plot both solutions to show the difference
figure;
plot(y_interp,'displayname','manual-solution'); hold on;
plot(y_interp_correct,'k--','displayname','matlab solution');
leg1 = legend('show');
set(leg1,'Location','Best');
ylabel('interpolated points');
xlabel('query points');
Note that the "myInterp" function is as follows:
function yi = myInterp(x1, x2, y1, y2, qp)
%linearly interpolate the function value y(x) over the query point qp
yi = y1 + (qp-x1) * ( (y2-y1)/(x2-x1) );
end
And here is the plot showing that my implementation isn't correct :-(
Can anyone help me find where the mistake is? And why? I suspect it has something to do with ensuring that the query point is in-between the previous and current x-samples, but I'm not sure.
The problem in your code is that you at times call myInterp with a value of qpi that is outside of the bounds x_data(kk-1) and x_data(kk). This leads to invalid extrapolation results.
Your logic of looping over kk rather than cc is very confusing to me. I would write a simple for loop over cc, which are the points at which you want to interpolate. For each of these points, advance kk, if necessary, such that qp(cc) is in between x_data(kk) and x_data(kk+1) (you can use kk-1 and kk instead if you prefer, just initialize kk=2 to ensure that kk-1 exists, I just find starting at kk=1 more intuitive).
To simplify the logic here, I'm limiting the values in qp to be inside the limits of x_data, so that we don't need to test to ensure that x_data(kk+1) exists, nor that x_data(1)<pq(cc). You can add those tests in if you wish.
Here's my code:
qp = [ceil(x_data(1)+0.1):floor(x_data(end)-0.1)];
y_interp = qp*nan; % this will hold our solution
kk=1; % indexes through the data
for cc=1:numel(qp)
% advance kk to where we can interpolate
% (this loop is guaranteed to not index out of bounds because x_data(end)>qp(end),
% but needs to be adjusted if this is not ensured prior to the loop)
while x_data(kk+1) < qp(cc)
kk = kk + 1;
end
% perform online interpolation
y_interp(cc) = myInterp(x_data(kk), x_data(kk+1), y_data(kk), y_data(kk+1), qp(cc));
end
As you can see, the logic is a lot simpler this way. The result is identical to y_interp_correct. The inner while x_data... loop serves the same purpose as your outer while loop, and would be the place where you read your data from wherever it's coming from.

How to solve this recurrence using masters method?

T(n)=4t(n/2) + n^2 and t(1)=1
I dont know guys, I can solve other ones but I seem to get stuck and cant start with this one
Let's work through this one and see what we find. In this case, we have a = 4, b = 2, and d = 2. Since logb a = 2 = d, we should get that t(n) = Θ(n2 log n).
Let's quickly check to see if that's the case by thinking about how much work is done per level in the tree. At the top level, we do n2 work and then make four calls on problems of size n/2. Each of those problems does (n/2)2 = n2 / 4 work, and since there's four copies of that problem the work done at the next level is n2. Each of those subproblems fires off four recursive calls on problems of size (n/4)2 = n2 / 16, and since there are sixteen of those subproblems the work done at that level is also n2. Overall, we see that each layer in the tree does n2 work and that there are Θ(log n) layers, so the total work done is Θ(n2 log n), matching our bound from the Master Theorem.

How to solve project Euler #12 in Lua?

Ok, here it goes another Euler problem question.
I've started to learn Lua by solving Euler project problems and got stuck on Euler problem 12.
It looks to me very straightforward and I don't understand why is my result incorrect?
Here is my solution so far:
-- return triangular number of the specified number
function get_tri_num(num)
local n = 0
for i=1, num do
n = n + i
end
return n
end
-- return all factors of the specifeid number
function factors(num)
local factors = {}
for i=1, num/2 do
if num%i == 0 then
factors[#factors+1] = i
end
end
factors[#factors+1] = num
return factors
end
-- get the first triangle number with >500 divisors
function euler12()
local n = 0
local trinum = 1
while true do
n = n + 7
trinum = get_tri_num(n)
if #factors(trinum) > 500 then break end
end
print(trinum, n)
end
euler12()
This problem is computation intensive, well, at least the way I am solving it, so I use luajit.
time luajit euler12.lua
103672800 14399
real 3m14.971s
user 3m15.033s
sys 0m0.000s
First, I try this solution on the toy example provided in the problem description. Changing the line of euler12() to if #factors(trinum) > 5 then break end, I get:
28 7
Which corresponds to the results shown in the problem example.
Second, after I see that the toy example is working I run euler12() with >500 condition. According to my solution the answer is 103672800 and yes, if I separately check the number of divisors for this result is >500:
print(#factors(103672800))
648
But...
The problem is here:
while true do
n = n + 7
Why does n increaments 7 each time? That doesn't make sense, change it to 1, and you could get the correct answer.
However, the performance is still poor. Several places that could be improved:
Every time the function get_tri_num is called, it's calculating
from scratch, that's not necessary.
You don't need the factors of a number, you only need the number of
factors of a number, so why return a table in factors?
for i=1, num/2 do is not necessary. Iterating to the square root of
num is enough to get the number of factors.
Refer to my code for the same problem.

Project Euler #3 Ruby Solution - What is wrong with my code?

This is my code:
def is_prime(i)
j = 2
while j < i do
if i % j == 0
return false
end
j += 1
end
true
end
i = (600851475143 / 2)
while i >= 0 do
if (600851475143 % i == 0) && (is_prime(i) == true)
largest_prime = i
break
end
i -= 1
end
puts largest_prime
Why is it not returning anything? Is it too large of a calculation going through all the numbers? Is there a simple way of doing it without utilizing the Ruby prime library(defeats the purpose)?
All the solutions I found online were too advanced for me, does anyone have a solution that a beginner would be able to understand?
"premature optimization is (the root of all) evil". :)
Here you go right away for the (1) biggest, (2) prime, factor. How about finding all the factors, prime or not, and then taking the last (biggest) of them that is prime. When we solve that, we can start optimizing it.
A factor a of a number n is such that there exists some b (we assume a <= b to avoid duplication) that a * b = n. But that means that for a <= b it will also be a*a <= a*b == n.
So, for each b = n/2, n/2-1, ... the potential corresponding factor is known automatically as a = n / b, there's no need to test a for divisibility at all ... and perhaps you can figure out which of as don't have to be tested for primality as well.
Lastly, if p is the smallest prime factor of n, then the prime factors of n are p and all the prime factors of n / p. Right?
Now you can complete the task.
update: you can find more discussion and a pseudocode of sorts here. Also, search for "600851475143" here on Stack Overflow.
I'll address not so much the answer, but how YOU can pursue the answer.
The most elegant troubleshooting approach is to use a debugger to get insight as to what is actually happening: How do I debug Ruby scripts?
That said, I rarely use a debugger -- I just stick in puts here and there to see what's going on.
Start with adding puts "testing #{i}" as the first line inside the loop. While the screen I/O will be a million times slower than a silent calculation, it will at least give you confidence that it's doing what you think it's doing, and perhaps some insight into how long the whole problem will take. Or it may reveal an error, such as the counter not changing, incrementing in the wrong direction, overshooting the break conditional, etc. Basic sanity check stuff.
If that doesn't set off a lightbulb, go deeper and puts inside the if statement. No revelations yet? Next puts inside is_prime(), then inside is_prime()'s loop. You get the idea.
Also, there's no reason in the world to start with 600851475143 during development! 17, 51, 100 and 1024 will work just as well. (And don't forget edge cases like 0, 1, 2, -1 and such, just for fun.) These will all complete before your finger is off the enter key -- or demonstrate that your algorithm truly never returns and send you back to the drawing board.
Use these two approaches and I'm sure you'll find your answers in a minute or two. Good luck!
Do you know you can solve this with one line of code in Ruby?
Prime.prime_division(600851475143).flatten.max
=> 6857

Pathfinding in Prolog

I'm trying to teach myself Prolog. Below, I've written some code that I think should return all paths between nodes in an undirected graph... but it doesn't. I'm trying to understand why this particular code doesn't work (which I think differentiates this question from similar Prolog pathfinding posts). I'm running this in SWI-Prolog. Any clues?
% Define a directed graph (nodes may or may not be "room"s; edges are encoded by "leads_to" predicates).
room(kitchen).
room(living_room).
room(den).
room(stairs).
room(hall).
room(bathroom).
room(bedroom1).
room(bedroom2).
room(bedroom3).
room(studio).
leads_to(kitchen, living_room).
leads_to(living_room, stairs).
leads_to(living_room, den).
leads_to(stairs, hall).
leads_to(hall, bedroom1).
leads_to(hall, bedroom2).
leads_to(hall, bedroom3).
leads_to(hall, studio).
leads_to(living_room, outside). % Note "outside" is the only node that is not a "room"
leads_to(kitchen, outside).
% Define the indirection of the graph. This is what we'll work with.
neighbor(A,B) :- leads_to(A, B).
neighbor(A,B) :- leads_to(B, A).
Iff A --> B --> C --> D is a loop-free path, then
path(A, D, [B, C])
should be true. I.e., the third argument contains the intermediate nodes.
% Base Rule (R0)
path(X,Y,[]) :- neighbor(X,Y).
% Inductive Rule (R1)
path(X,Y,[Z|P]) :- not(X == Y), neighbor(X,Z), not(member(Z, P)), path(Z,Y,P).
Yet,
?- path(bedroom1, stairs, P).
is false. Why? Shouldn't we get a match to R1 with
X = bedroom1
Y = stairs
Z = hall
P = []
since,
?- neighbor(bedroom1, hall).
true.
?- not(member(hall, [])).
true.
?- path(hall, stairs, []).
true .
?
In fact, if I evaluate
?- path(A, B, P).
I get only the length-1 solutions.
Welcome to Prolog! The problem, essentially, is that when you get to not(member(Z, P)) in R1, P is still a pure variable, because the evaluation hasn't gotten to path(Z, Y, P) to define it yet. One of the surprising yet inspiring things about Prolog is that member(Ground, Var) will generate lists that contain Ground and unify them with Var:
?- member(a, X).
X = [a|_G890] ;
X = [_G889, a|_G893] ;
X = [_G889, _G892, a|_G896] .
This has the confusing side-effect that checking for a value in an uninstantiated list will always succeed, which is why not(member(Z, P)) will always fail, causing R1 to always fail. The fact that you get all the R0 solutions and none of the R1 solutions is a clue that something in R1 is causing it to always fail. After all, we know R0 works.
If you swap these two goals, you'll get the first result you want:
path(X,Y,[Z|P]) :- not(X == Y), neighbor(X,Z), path(Z,Y,P), not(member(Z, P)).
?- path(bedroom1, stairs, P).
P = [hall]
If you ask for another solution, you'll get a stack overflow. This is because after the change we're happily generating solutions with cycles as quickly as possible with path(Z,Y,P), only to discard them post-facto with not(member(Z, P)). (Incidentally, for a slight efficiency gain we can switch to memberchk/2 instead of member/2. Of course doing the wrong thing faster isn't much help. :)
I'd be inclined to convert this to a breadth-first search, which in Prolog would imply adding an "open set" argument to contain solutions you haven't tried yet, and at each node first trying something in the open set and then adding that node's possibilities to the end of the open set. When the open set is extinguished, you've tried every node you could get to. For some path finding problems it's a better solution than depth first search anyway. Another thing you could try is separating the path into a visited and future component, and only checking the visited component. As long as you aren't generating a cycle in the current step, you can be assured you aren't generating one at all, there's no need to worry about future steps.
The way you worded the question leads me to believe you don't want a complete solution, just a hint, so I think this is all you need. Let me know if that's not right.

Resources