I am trying to understand how I shall port my Java chess engine to dart.
So I have understood that I should use an Isolates to run my engine in parallell with the GUI but how can I force the engine to terminate the search.
In java I just set some boolean that where shared between the engine thread and the gui thread.
Answer I got:
You should send a message to the isolate, telling it to stop. You can simply do something like:
port.send('STOP');
My request
Thanks for the clarification. What I don't understand is that if the chess engine isolate is busy due to a port.send('THINK') command how can it respond to a port.send('STOP') command
Each isolate is single-threaded. As long as your program is running nobody else will have the means to interfere with your execution.
If you want to be able to react to outside events (including messages from other isolates) you need to split your long running execution into smaller parts. A chess-engine probably has already some state to know where to look for the next move (assuming it's built with something like A*). In this case you could just periodically interrupt your execution and resume after a minimal timeout.
Example:
var state;
var stopwatch = new Stopwatch()..run();
void longRunning() {
while (true) {
doSomeWorkThatUpdatesTheState();
if (stopwatch.elapsedMilliseconds > 200) {
stopwatch.reset();
Timer.run(longRunning);
return;
}
}
}
The new API will contain a
isolate.kill(loopForever ? Isolate.IMMEDIATE : Isolate.AS_EVENT);
See https://code.google.com/p/dart/issues/detail?id=21189#c4 for a full example.
Related
Folks, is it possible to obtain currently used Scheduler within an operator?
The problem that I have is that Mono.fromFuture() is being executed on a native thread (AWS CRT Http Client in my case). As result all subsequent operators are also executed on that thread. And later code wants to obtain class loader context that is obviously null. I realize that I can call .publishOn(originalScheduler) after .fromFuture() but I don't know what scheduler is used to materialize Mono returned by my function.
Is there elegant way to deal with this?
fun myFunction(): Mono<String> {
return Mono.just("example")
.flatMap { value ->
Mono.fromFuture {
// invocation of 3rd party library that executes Future on the thread created in native code.
}
}
.map {
val resource = Thread.currentThread().getContextClassLoader().getResources("META-INF/services/blah_blah");
// NullPointerException because Thread.currentThread().getContextClassLoader() returns NULL
resource.asSequence().first().toString()
}
}
It is not possible, because there's no guarantee that there is a Scheduler at all.
The place where the subscription is made and the data starts flowing could simply be a Thread. There is no mechanism in Java that allows an external actor to submit a task to an arbitrary thread (you have to provide the Runnable at Thread construction).
So no, there's no way of "returning to the previous Scheduler".
Usually, this shouldn't be an issue at all. If your your code is reactive it should also be non-blocking and thus able to "share" whichever thread it currently runs on with other computations.
If your code is blocking, it should off-load the work to a blocking-compatible Scheduler anyway, which you should explicitly chose. Typically: publishOn(Schedulers.boundedElastic()). This is also true for CPU-intensive tasks btw.
I am working on exposing an audio library (C library) for Dart. To trigger the audio engine, it requires a few initializations steps (non blocking for UI), then audio processing is triggered with a perform function, which is blocking (audio processing is a heavy task). That is why I came to read about Dart isolates.
My first thought was that I only needed to call the performance method in the isolate, but it doesn't seem possible, since the perform function takes the engine state as first argument - this engine state is an opaque pointer ( Pointer in dart:ffi ). When trying to pass engine state to a new isolate with compute function, Dart VM returns an error - it cannot pass C pointers to an isolate.
I could not find a way to pass this data to the isolate, I assume this is due to the separate memory of main isolate and the one I'm creating.
So, I should probably manage the entire engine state in the isolate which means :
Create the engine state
Initialize it with some options (strings)
trigger the perform function
control audio at runtime
I couldn't find any example on how to perform this actions in the isolate, but triggered from main thread/isolate. Neither on how to manage isolate memory (keep the engine state, and use it). Of course I could do
Here is a non-isolated example of what I want to do :
Pointer<Void> engineState = createEngineState();
initEngine(engineState, parametersString);
startEngine(engineState);
perform(engineState);
And at runtime, triggered by UI actions (like slider value changed, or button clicked) :
setEngineControl(engineState, valueToSet);
double controleValue = getEngineControl(engineState);
The engine state could be encapsulated in a class, I don't think it really matters here.
Whether it is a class or an opaque datatype, I can't find how to manage and keep this state, and perform triggers from main thread (processed in isolate). Any idea ?
In advance, thanks.
PS: I notice, while writing, that my question/explaination may not be precise, I have to say I'm a bit lost here, since I never used Dart Isolates. Please tell me if some information is missing.
EDIT April 24th :
It seems to be working with creating and managing object state inside the Isolate. But the main problem isn't solved. Because the perform method is actually blocking while it is not completed, there is no way to still receive messages in the isolate.
An option I thought first was to use the performBlock method, which only performs a block of audio samples. Like this :
while(performBlock(engineState)) {
// listen messages, and do something
}
But this doesn't seem to work, process is still blocked until audio performance finishes. Even if this loop is called in an async method in the isolate, it blocks, and no message are read.
I now think about the possibility to pass the Pointer<Void> managed in main isolate to another, that would then be the worker (for perform method only), and then be able to trigger some control methods from main isolate.
The isolate Dart package provides a registry sub library to manage some shared memory. But it is still impossible to pass void pointer between isolates.
[ERROR:flutter/lib/ui/ui_dart_state.cc(157)] Unhandled Exception: Invalid argument(s): Native objects (from dart:ffi) such as Pointers and Structs cannot be passed between isolates.
Has anyone already met this kind of situation ?
It is possible to get an address which this Pointer points to as a number and construct a new Pointer from this address (see Pointer.address and Pointer.fromAddress()). Since numbers can freely be passed between isolates, this can be used to pass native pointers between them.
In your case that could be done, for example, like this (I used Flutter's compute to make the example a bit simpler but that would apparently work with explicitly using Send/ReceivePorts as well)
// Callback to be used in a backround isolate.
// Returns address of the new engine.
int initEngine(String parameters) {
Pointer<Void> engineState = createEngineState();
initEngine(engineState, parameters);
startEngine(engineState);
return engineState.address;
}
// Callback to be used in a backround isolate.
// Does whichever processing is needed using the given engine.
void processWithEngine(int engineStateAddress) {
final engineState = Pointer<Void>.fromAddress(engineStateAddress);
process(engineState);
}
void main() {
// Initialize the engine in a background isolate.
final address = compute(initEngine, "parameters");
final engineState = Pointer<Void>.fromAddress(address);
// Do some heavy computation in a background isolate using the engine.
compute(processWithEngine, engineState.address);
}
I ended up doing the processing of callbacks inside the audio loop itself.
while(performAudio())
{
tasks.forEach((String key, List<int> value) {
double val = getCallback(key);
value.forEach((int element) {
callbackPort.send([element, val]);
});
});
}
Where the 'val' is the thing you want to send to callback. The list of int 'value' is a list of callback index.
Let's say you audio loop performs with vector size of 512 samples, you will be able to pass your callbacks after every 512 audio samples are processed, which means 48000 / 512 times per second (assuming you sample rate is 48000). This method is not the best one but it works, I still have to see if it works in very intensive processing context though. Here, it has been thought for realtime audio, but it could work the same for audio rendering.
You can see the full code here : https://framagit.org/johannphilippe/csounddart/-/blob/master/lib/csoundnative.dart
Apple's official documentation is sometimes difficult for understanding, especially for non-native speakers. This is an excerpt from Anatomy of NSRunLoop
A run loop is very much like its name sounds. It is a loop your thread enters and uses to run event handlers in response to incoming events. Your code provides the control statements used to implement the actual loop portion of the run loop—in other words, your code provides the while or for loop that drives the run loop. Within your loop, you use a run loop object to "run” the event-processing code that receives events and calls the installed handlers.
This confuses me. My code never provides while or for loops even for non-main threads. What is being meant here? Can anyone explain?
Keep reading until Using Run Loop Objects and Apple’s code samples do show control statements like while loops.
Listing 3-1
NSInteger loopCount = 10;
do
{
// Run the run loop 10 times to let the timer fire.
[myRunLoop runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1]];
loopCount--;
}
while (loopCount);
Listing 3-2
do
{
// Start the run loop but return after each source is handled.
SInt32 result = CFRunLoopRunInMode(kCFRunLoopDefaultMode, 10, YES);
// If a source explicitly stopped the run loop, or if there are no
// sources or timers, go ahead and exit.
if ((result == kCFRunLoopRunStopped) || (result == kCFRunLoopRunFinished))
done = YES;
// Check for any other exit conditions here and set the
// done variable as needed.
}
while (!done);
The intended way to use NSRunLoop does require you to invoke the next run, again and again until a certain condition is met.
But if you start your run loop with -[NSRunLoop run], it runs indefinitely without help. That’s what the main thread does.
In case you’re wondering why Apple lets (or wants) you to control every loop, NeXTSTEP shipped in the 80s when every CPU cycle counts. Functions like -[NSRunLoop runMode:beforeDate:] lets you fine tune the frequency and behaviour of your run loops down to every run.
Oh, you do run a loop on the main thread, but you don't know.
Set a breakpoint on an action method and look at the stack trace. There will be something like:
#9 0x00007fff912eaa29 in -[NSApplication run] ()
That's the loop.
In another thread you very often do not need a instance of NSRunLoop. Its primary ability is to receive events and to dispatch them. But in an additional thread you want to process calculations straight forwarded in most cases. To have a term for it: Additional threads are usually not event-driven.
So you have a run loop (and have to run it) only rarely, especially when you have networking or file access that is dispatched using a run loop.In such a case it is a common mistake that one does not run the thread's run loop.
OpenCL doesn't have a global barrier that will stop all threads, so I'm trying to create a work around with the following code:
void barrier(__global uint* scratch) {
uint nThreads = get_global_size(0);
atom_inc(scratch);
/* this loop never terminates */
while(scratch[0] < nThreads) {
continue;
}
}
The idea is that each thread loops until all of them increment that one piece of memory.
However, the value read from scratch[0] never changes for the threads once it's been read, and it loops forever. I know it's being incremented because it's the correct value when I read it back to the host.
Is the global memory being locally cached? What's going on here?
Found the problem: the order in which work groups are executed is implementation defined. This means that some threads might start only after others have finished.
In the code I gave, the work groups that are started first will loop forever waiting on the the others to hit the 'barrier'. And the work groups that would be started later won't ever start because they're waiting for the first ones to finish.
If the implementation (I'm on a Radeon 5750, using Stream SDK 2.2) executes all work groups concurrently, then it probably wouldn't be an issue. But that's not the case for my setup.
I have a problem also described here: http://www.delphigroups.info/3/9/106748.html
I have tried almost all forms of placing Application->Terminate() func everywhere in the code, following and not 'return 0', 'ExitProcess(0)', 'ExitThread(0)', exit(0). No working variant closes the app. Instead the code after Application->Terminate() statement is running.
I have two or more threads in the app. I tried calling terminate func in created after execution threads and in main thread.
Also this is not related (as far as I can imagine) with CodeGuard / madExcept (I have turned it off and on, no effect). CodeGuard turning also did not do success.
The only working code variant is to place Application->Terminate() call to any of any form button's OnClick handler. But this does not fit in my needs. I need to terminate in any place.
What I should do to terminate all the threads in C++ Builder 2010 application and then terminate the process?
Application->Terminate() does not close application immediately, it only signals you want to close the application.
Terminate calls the Windows API
PostQuitMessage function to perform an
orderly shutdown of the application.
Terminate is not immediate.
In your functions call Application->ProcessMessages() then check if the Application->Terminated property is true.
For applications using
calculation-intensive loops, call
ProcessMessages periodically, and
also check Terminated to determine
whether to abort the calculation and
allow the application to terminate
For example:
void Calc()
{
for (int x = 0; x < 1000000; ++x)
{
// perform complex calculation
// check if need to exit
Application->ProcessMessages();
if (Application->Terminated)
{
break;
} // end if
} // end for
// clean up
}