Delphi interface generic function - Is there a work around? - delphi

I have the following code
IProxy<T> = interface
['{1E3A98C5-78BA-4D65-A4BA-B6992B8B4783}']
function Setup : ISetup<T>;
function Proxy : T;
function CastAs<I : IInterface> : IInterface;
end;
Is there a way to work around the compiler error that is received when compiling?
"[DCC Error] Delphi.Mocks.pas(123): E2535 Interface methods must not have parameterized methods"
Basically I would like to have this interface be passed around and be able to cast off it, by passing in the type to cast to and having that type returned. I can achieve this with a class, however would prefer passing around an interface.
Additional Info:
Say I have the following class
TInterfaceProxy<T> = class(TBaseProxy<T>)
private type
TProxyVirtualInterface = class(TVirtualInterface)
private
FProxy : TInterfaceProxy<T>;
protected
public
function QueryInterface(const IID: TGUID; out Obj): HRESULT; override; stdcall;
constructor Create(AProxy : TInterfaceProxy<T>; AInterface: Pointer; InvokeEvent: TVirtualInterfaceInvokeEvent);
end;
private
FVirtualInterfaces : TDictionary<TGUID, TProxyVirtualInterface>;
protected
function InternalQueryInterface(const IID: TGUID; out Obj): HRESULT; stdcall;
function QueryInterface(const IID: TGUID; out Obj): HRESULT; override;
function Proxy : T;override;
function CastAs<I: IInterface> : I;
public
constructor Create;override;
destructor Destroy;override;
end;
CastAs works well here as the newly requested cast can be created a new virtual interface. Now if I want to pass this class around its fine. However if I require it as an interface i.e. TInterfaceProxy<T> = class(TBaseProxy<T>, IProxy<T>) it doesn't work understand that. Don't agree with it, but understand.
Therefore how do I get around this restriction so that I can call a CastAs function, pass in a type (any interface type to start with), and be able to create a virtual interface from it?

Interfaces do not support generic parameterized methods, as the compiler says.
There is no workaround because it's a fundamental limitation. Parameterized methods in classes are implemented by adding one method per instantiation to the class. That works for classes since they are concrete, but is not viable for interfaces. That's because interfaces are a table of functions and the size of that table cannot vary depending on which generic method instantiations happen to be present elsewhere in the code. For similar reasons, generic methods cannot be virtual or dynamic.
The code in your question is a little mis-leading also. You wrote:
function CastAs<I : IInterface> : IInterface;
but I'm sure you meant:
function CastAs<I : IInterface> : I;
In any case, it's not possible. One option is to use a class instead. I agree that this is a bind.
If you want to do it in an interface, the best you can do is:
function CastAs(const IID: TGUID): IInterface;
But you'd have to call it like this:
MyIntf := ProxyIntf.CastAs(IMyIntf) as IMyIntf;
which feels somewhat foul.
Choose your poison!

As the error message states, a method in an interface cannot have Generic parameters. The compiler simply does not support it, and this is documented as such:
http://docwiki.embarcadero.com/RADStudio/XE4/en/Overview_of_Generics
Parameterized method in interface
A parameterized method (method declared with type parameters) cannot be declared in an interface.
In other words, your CastAs method is illegal because it is declared in an interface type. On the other hand, you don't need such a method in the first place. You can use SysUtils.Supports() instead for casting one interface to another.

Something like the following compiles for me with Delphi 11.0 (yet to see if it crashes):
TStoryItemList = TList<IStoryItem>;
TObjectListEx<T: class> = class
class function GetAllOfInterface<AInterface: IInterface>(const list: TList<T>): TList<AInterface>;
end;
//...
class function TObjectListEx<T>.GetAllOfInterface<AInterface>(const list: TList<T>): TList<AInterface>;
var
itemAsAInterface: AInterface;
begin
var guid := TRttiInterfaceType(TRttiContext.Create.GetType(TypeInfo(AInterface))).GUID;
var listOfAInterface := TList<AInterface>.Create;
for var item in list do
if Supports(item, guid, itemAsAInterface) then
listOfAInterface.Add(itemAsAInterface);
result := listOfAInterface;
end;
usage
function TStoryItem.GetStoryItems: TStoryItemList;
begin
result := TObjectListEx<TControl>.GetAllOfInterface<IStoryItem>(Controls);
end;

Related

Add an interface to a class afterwards

Is it possible to add and implement an interface to an already existing class (which is a descendant of TInterfaced or TInterfacedPersistent) to accomplish separating Model and View into 2 units?
A small explanation why I need something like this:
I am developing a tree-structure, open-type model, which has following structure (VERY simplified and incomplete, just to illustrate the outline of the problem):
Database_Kernel.pas
TVMDNode = class(TInterfacedPersistent);
public
class function ClassGUID: TGUID; virtual; abstract; // constant. used for RTTI
property RawData: TBytes {...};
constructor Create(ARawData: TBytes);
function GetParent: TVMDNode;
function GetChildNodes: TList<TVMDNode>;
end;
Vendor_Specific_Stuff.pas
TImageNode = class(TVMDNode)
public
class function ClassGUID: TGUID; override; // constant. used for RTTI
// Will be interpreted out of the raw binary data of the inherited class
property Image: TImage {...};
end;
TUTF8Node = class(TVMDNode)
public
class function ClassGUID: TGUID; override; // constant. used for RTTI
// Will be interpreted out of the raw binary data of the inherited class
property StringContent: WideString {...};
end;
TContactNode = class(TVMDNode)
public
class function ClassGUID: TGUID; override; // constant. used for RTTI
// Will be interpreted out of the raw binary data of the inherited class
property PreName: WideString {...};
property FamilyName: WideString {...};
property Address: WideString {...};
property Birthday: TDate {...};
end;
Using a GUID-based RTTI (which uses ClassGUID), the function GetChildNodes is able to find the matching class and initialize it with the raw data. (Each dataset contains ClassGUID and RawData beside other data like created/updated timestamps)
It is important to notice that my API (Database_Kernel.pas) is strictly separated from the vendor's node classes (Vendor_Specific_Stuff.pas).
A vendor-specific program's GUI wants to visualize the nodes, e.g. giving them an user-friendly name, an icon etc.
Following idea works:
IGraphicNode = interface(IInterface)
function Visible: boolean;
function Icon: TIcon;
function UserFriendlyName: string;
end;
The vendor's specific descendants of TVMDNode in Vendor_Specific_Stuff.pas will implement the IGraphicNode interface.
But the vendor also needs to change Database_Kernel.pas to implement IGraphicNode to the base node class TVMDNode (which is used for "unknown" nodes, where RTTI was unable to find the matching class of the dataset, so at least the binary raw data can be read using TVMDNode.RawData).
So he will change my class as follows:
TVMDNode = class(TInterfacedPersistent, IGraphicNode);
public
property RawData: TBytes {...};
class function ClassGUID: TGUID; virtual; abstract; // constant. used for RTTI
constructor Create(ARawData: TBytes);
function GetParent: TVMDNode;
function GetChildNodes: TList<TVMDNode>;
// --- IGraphicNode
function Visible: boolean; virtual; // default behavior for unknown nodes: False
function Icon: TIcon; virtual; // default behavior for unknown nodes: "?" icon
function UserfriendlyName: string; virtual; // default behavior for unknown nodes: "Unknown"
end;
The problem is that IGraphicNode is vendor/program-specific and should not be in the API's Database_Kernel.pas, since GUI and Model/API should be strictly divided.
My wish would be that the interace IGraphicNode could be added and implemented to the existing TVMDNode class (which is already a descendant of TInterfacedPersistent to allow interfaces) in a separate unit. As far as I know, Delphi does not support something like this.
Beside the fact that it is not nice to mix Model and View in one single unit/class, there will be following real-world problem: If the vendor has to change my Database_Kernel.pas API to extend TVMDNode with the IGraphicNode interface, he needs to re-do all his changes, as soon as I release a new version of my API Database_Kernel.pas.
What should I do? I thought very long about possible solutions possible with Delphi's OOP. A workaround may be nesting TVMDNode's into a container class, which has a secondary RTTI, so after I have found the TVMDNode class, I could search for a TVMDNodeGUIContainer class. But this sounds very strangle and like a dirty hack.
PS: This API is an OpenSource/GPL project. I am trying to stay compatible with old generations of Delphi (e.g. 6), since I want to maximize the number of possible users. However, if a solution of the problem above is only possible with the new generation of Delphi languages, I might consider dropping Delphi 6 support for this API.
Yes it is possible.
We implemented something similar to gain control of global/singletons for testing purposes. We changed our singletons to be accessible as interfaces on the application (not TApplication, our own equivalent). Then we added the ability to dynamically add/remove interfaces at run-time. Now our test cases are able to plug in suitable mocks as and when needed.
I'll describe the general approach, hopefully you'll be able to apply it to the specifics of your situation.
Add a field to hold a list of dynamically added interface. An TInterfaceList works nicely.
Add methods to add/remove the dynamic interfaces.
Override function QueryInterface(const IID: TGUID; out Obj): HResult; virtual;. Your implementation will first check the interface list, and if not found will defer to the base implementation.
Edit: Sample Code
To answer your question:
I understand that the class now can tell others that it supports interface X now, so the interface was ADDED during runtime. But I also need to IMPLEMENT the interface's methods from outside (another unit). How is this done?
When you add the interface, you're adding an instance of the object that implements the interface. This is very much like the normal property ... implements <interface> technique to delegate implementation of an interface to another object. The key difference being this is dynamic. As such it will have the same kinds of limitations: E.g. no access to the "host" unless explicitly given a reference.
The following DUnit test case demonstrates a simplified version of the technique in action.
unit tdDynamicInterfaces;
interface
uses
SysUtils,
Classes,
TestFramework;
type
TTestDynamicInterfaces = class(TTestCase)
published
procedure TestUseDynamicInterface;
end;
type
ISayHello = interface
['{6F6DDDE3-F9A5-407E-B5A4-CDF91791A05B}']
function SayHello: string;
end;
implementation
{ ImpGlobal }
type
TDynamicInterfaces = class(TInterfacedObject, IInterface)
{ We must explicitly state that we are implementing IInterface so that
our implementation of QueryInterface is used. }
private
FDynamicInterfaces: TInterfaceList;
protected
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
public
constructor Create;
destructor Destroy; override;
procedure AddInterface(AImplementedInterface: IInterface);
end;
type
TImplementor = class (TInterfacedObject, ISayHello)
{ NOTE: This could easily have been implemented in a separate unit. }
protected
{ISayHello}
function SayHello: string;
end;
{ TDynamicInterfaces }
procedure TDynamicInterfaces.AddInterface(AImplementedInterface: IInterface);
begin
{ The simplest, but least flexible approach (see also QueryInterface).
Other options entail tagging specific GUIDs to be associated with given
implementation instance. Then it becomes feasible to check for duplicates
and also dynamically remove specific interfaces. }
FDynamicInterfaces.Add(AImplementedInterface);
end;
constructor TDynamicInterfaces.Create;
begin
inherited Create;
FDynamicInterfaces := TInterfaceList.Create;
end;
destructor TDynamicInterfaces.Destroy;
begin
FDynamicInterfaces.Free;
inherited Destroy;
end;
function TDynamicInterfaces.QueryInterface(const IID: TGUID; out Obj): HResult;
var
LIntf: IInterface;
begin
{ This implementation basically means the first implementor added will be
returned in cases where multiple implementors support the same interface. }
for LIntf in FDynamicInterfaces do
begin
if Supports(LIntf, IID, Obj) then
begin
Result := S_OK;
Exit;
end;
end;
Result := inherited QueryInterface(IID, Obj);
end;
{ TImplementor }
function TImplementor.SayHello: string;
begin
Result := 'Hello. My name is, ' + ClassName;
end;
{ TTestDynamicInterfaces }
procedure TTestDynamicInterfaces.TestUseDynamicInterface;
var
LDynamicInterfaceObject: TDynamicInterfaces;
LInterfaceRef: IUnknown;
LFriend: ISayHello;
LActualResult: string;
begin
LActualResult := '';
{ Use ObjRef for convenience to not declare interface with "AddInterface" }
LDynamicInterfaceObject := TDynamicInterfaces.Create;
{ But lifetime is still managed by the InterfaceRef. }
LInterfaceRef := LDynamicInterfaceObject;
{ Comment out the next line to see what happens when support for
interface is not dynamically added. }
LDynamicInterfaceObject.AddInterface(TImplementor.Create);
if Supports(LInterfaceRef, ISayHello, LFriend) then
begin
LFriend := LInterfaceRef as ISayHello;
LActualResult := LFriend.SayHello;
end;
CheckEqualsString('Hello. My name is, TImplementor', LActualResult);
end;
end.
You can preserve the ability to persist data and implement it through inheritance and still create the correct instances for the ClassGUIDs stored in the tables if you'd apply the factory design pattern.
For each node class there would be one class factory (or just a function pointer) responsible for creation of the correct Delphi class. Class factories may register themselves in the unit initialization section (once per application startup) at the kernel singleton object.
The kernel singleton would then map GUID to correct factory that would in turn call the correct class instance constructor (as shown at http://delphipatterns.blog.com/2011/03/23/abstract-factory)
Packages may be split into separate DLLs and classes implemented in separate units, still inheriting from one base TVMNode class.
The features you now use RTTI for can be supported in descendant classes or in the factory classes easily through some virtual methods.
You might also consider using simpler Data Transfer Objects for saving/loading the TVMNodes and perhaps take some inspiration from an already well perceived Object Relational Mapper or a Object Persistence framework as the problem you are trying to solve seem to me like exactly the problems they are handling (already)
I don't know about good Delphi open source frameworks of this class. But from other languages you can look at Java Hibernate, Microsoft .NET Entity Framework or minimalistic Google Protocol Buffers serializer

Interface inheritance without generics

I am trying to implement an interface to convert records in a dataset to Delphi records in a pre-generics version of Delphi. I don't like the interface at the moment, as it will always need calls to Supports which I'd like to avoid if possible and was wondering if there's a better way of doing it that I'm missing.
So far I have an navigation interface and data retrieval interface defined:
IBaseRecordCollection = interface
procedure First;
procedure Next;
function BOF: boolean;
... // other dataset nav stuff
end;
IRecARecordCollection = interface
function GetRec: TRecA;
end;
IRecBRecordCollection = interface
function GetRec: TRecB;
end;
Basically I have a concrete base class that contains a private dataset and implements IBaseRecordCollection and concrete class for each RecordCollection interface which derives from an abstract class implementing the IBaseRecordCollection (handled by an implements property) with the implementation of the record retrieval routine:
TAbstractTypedRecordCollection = class(TInterfacedObject, IBaseRecordCollection)
private
FCollection: IBaseRecordCollection;
protected
property Collection: IBaseRecordCollection read FCollection implements IBaseRecordCollection;
public
constructor Create(aRecordCollection: IBaseRecordCollection);
end;
TRec1RecordCollection = class(TAbstractTypedRecordCollection, IRecARecordCollection);
public
function GetRec: TRecA;
end;
Now, to use this I'm forced to have a builder that returns a IRecARecordCollection and then mess around with Supports, which I'm not keen on as it will always be used in this fashion.
i.e.
procedure GetMyRecASet;
var
lRecARecordCollection: IRecARecordCollection;
lRecordCollection: IBaseRecordCollection;
begin
lRecARecordCollection := BuildRecACollection;
if not supports(lRecARecordCollection, IBaseRecordCollection, lRecordCollection) then
raise exception.create();
while not lRecordCollection.EOF do
begin
lRecARecordCollection.GetRec.DoStuff;
lRecordCollection.Next;
end;
end;
Although this works, I'm not keen on the supports call and mixing my lRecordCollections and my lRecARecordCollections like this. I had originally hoped to be able to do something like:
IBaseRecordCollection = interface
// DBNav stuff
end;
IRecARecordCollection = interface (IBaseRecordCollection)
function GetRec: TRecA;
end;
TRec1RecordCollection = class(TInterfacedObject, IRecARecordCollection)
private
FCollection: IBaseRecordCollection;
protected
property Collection: IBaseRecordCollection read FCollection implements IBaseRecordCollection;
public
function GetRec: TRecA;
end;
but unfortunately Delphi wasn't smart enough to realise that the implementation of IRecARecordCollection was split over the base IBaseRecordCollection in the Collection property implements call and the TRec1RecordCollection object.
Are there any other suggestions for neater ways to acheive this?
-- edit to give a (longer) reply to #David's answer than possible in a comment
The suggested solution of:
IBaseRecordCollection = interface ['{C910BD0A-26F4-4682-BC82-605C4C8F9173}']
function GetRecNo: integer;
function GetRecCount: integer;
function GetFieldList: TFieldList;
function EOF: boolean;
function BOF: boolean;
...
end;
IRec1RecordCollection = interface (IBaseRecordCollection) ['{E12F9F6D-6D57-4C7D-AB87-8DD50D35DCA2}']
function GetRec: TRec1;
property Rec: TRec1 read GetRec;
end;
TAbstractTypedRecordCollection = class(TInterfacedObject, IBaseRecordCollection)
private
FCollection: IBaseRecordCollection;
protected
property Collection: IBaseRecordCollection read FCollection implements IBaseRecordCollection;
public
constructor Create(aRecordCollection: IBaseRecordCollection);
end;
TRec1RecordCollection = class(TAbstractTypedRecordCollection, IRec1RecordCollection, IBaseRecordCollection)
private
function GetRec: TRec1;
public
property Rec: TRec1 read GetRec;
end;
isn't compiling. It's complaining that TRec1RecordCollection cannot find methods related to IBaseRecordCollection. I also tried moving the Collection property from Abstract to Rec1RecordCollection and redeclaring the property in TRec1RecordCollection all with the same result
Looking a bit deeper it appears that direct inheritance of a class implementing IBaseRecordCollection would work but Delphi can't handle doing it indirectly via a property using implements.
Your code is almost there. The implements directive in your code fails to compile because you only declared that your class implements the derived interface. As it stands, your class does not implement the interface that the implements directive refers to, namely IBaseRecordCollection. You might think that would be inferred from the inheritance but it is not.
To solve your problem you simply need to declare that TRec1RecordCollection implements both interfaces:
type
TRec1RecordCollection = class(TInterfacedObject, IBaseRecordCollection,
IRecARecordCollection)
....
end;
Make just the one small change and your code will compile.
Update
Your edit to the question changes this somewhat. The code in my answer does indeed compile, given the code in your original question. However, add any method into IBaseRecordCollection and the compile will not accept it.
The compiler should accept this code and the fact that it does not is because of a compiler bug. Modern versions of Delphi will accept the code in your update to the question.
Unless you upgrade your compiler you will not be able to make your intended design work.

Delphi generics: How to spec "class that references its own type"

In Delphi XE2, I want to write a generic collection class which manipulates objects which must have a Copy(owntype) method, but I can't figure out how best to declare this.
I want something like this example (a collection of one item, for simplicity):
//------ Library ------
Type
TBaseCopyable = class
S: string;
// procedure Copy(OtherObject: TBaseCopyable); overload;
procedure Copy(OtherObject: TBaseCopyable); virtual;
end;
MyCollection<T: TBaseCopyable, constructor> = class
TheItem: T;
procedure SetItem(AItem: T);
function GetItem: T;
end;
[...]
function MyCollection<T>.GetItem: T;
Var
NewItem: T;
begin
NewItem := T.Create;
NewItem.Copy(TheItem);
Result := NewItem;
end;
//------ Usage ------
Type
TMyCopyable = class(TBaseCopyable)
I: integer;
// procedure Copy(OtherObject: TMyCopyable); overload;
procedure Copy(OtherObject: TMyCopyable); override;
end;
[...]
Col: MyCollection<TMyCopyable>;
The key problem is that in Col, I need the generic implementation of MyCollection to find TMyCopyable.Copy. Unsurprisingly, neither overload or virtual do the job:
With overload, the code compiles, but MyCollection.GetItem finds
TBaseCopyable.Copy, not TMyCopyable.Copy.
With virtual/override this
doesn't compile because the signatures of the two Copy declarations
don't match.
So I figure I need to use generics somehow in the specification of TBaseCopyable, possibly instead of inheritance. But I'm not sure how, primarily because I don't particularly need to feed a type parameter into TBaseCopyable, I just need the Copy argument type to refer to "the type of it's own class" in a generic way.
Ideas? Thanks!
Turn TBaseCopyable into a Generic class and apply its Generic type to Copy(), then TMyCopyable can override it, eg:
type
TBaseCopyable<T> = class
S: string;
procedure Copy(OtherObject: T); virtual;
end;
MyCollection<T: TBaseCopyable<T>, constructor> = class
TheItem: T;
procedure SetItem(AItem: T);
function GetItem: T;
end;
type
TMyCopyable = class(TBaseCopyable<TMyCopyable>)
I: integer;
procedure Copy(OtherObject: TMyCopyable); override;
end;
Alternatively, just do the same thing that TPersistent.Assign() does (since it does not use Generics):
type
TBaseCopyable = class
S: string;
procedure Copy(OtherObject: TBaseCopyable); virtual;
end;
MyCollection<T: TBaseCopyable, constructor> = class
TheItem: T;
procedure SetItem(AItem: T);
function GetItem: T;
end;
type
TMyCopyable = class(TBaseCopyable)
I: integer;
procedure Copy(OtherObject: TBaseCopyable); override;
end;
procedure TMyCopyable.Copy(OtherObject: TBaseCopyable);
begin
inherited;
if OtherObject is TMyCopyable then
I := TMyCopyable(OtherObject).I;
end;
Answering my own question, or at least summarizing findings:
So far as I can tell, there is no complete answer to the question as I posed it. What I have learned is this:
[1] Remy's solution is the way to go if the base item class (here TBaseCopyable) has no state, and either is abstract, or methods don't need to refer to other objects of the same type. (Eg: TBaseCopyable would have no fields and only abstract methods.)
[2] A significant issue is how to specify a generic class whose descendant classes can specify method arguments and return values of the same type as their enclosing class. In Remy's example, that is accomplished in the descendant class declaration:
TMyCopyable = class(TBaseCopyable<TMyCopyable>)
This means that in the generic class, T will be replaced by the ultimate class of interest.
[3] However, within TBaseCopyable's generic declaration, the information that T is always a TBaseCopyable is not available, so in TBaseCopyable's implementation, references to objects of type T won't be able to see TBaseCopyable's methods or fields.
This would be solved if we could set a constraint on T to tell the compiler that T is a TBaseCopyable.
That's apparently the approach in C#:
http://blogs.msdn.com/b/ericlippert/archive/2011/02/03/curiouser-and-curiouser.aspx
In Delphi, I think that would go like this:
type
TBaseCopyable<T: TBaseCopyable<T> > = class
...
like Remy shows for MyCollection. However, that syntax is not legal within the same class declaration (error: undeclared identifier TBaseCopyable), because TBaseCopyable is not yet fully defined. We might think to create a forward declaration for TBaseCopyable (like we would for non-generic classes), but that throws an error, and apparently it's not supported by the compiler:
How to set a forward declaration with generic types under Delphi 2010?
E2086 error with forward declaration of a generic type http://qc.embarcadero.com/wc/qcmain.aspx?d=94044
[4] Maybe the generic class could inherit the implementation?
What if we did this:
type
TBaseCopyable<T> = class(TBaseCopyableImpl) ...
That would allow TBaseCopyable to have some fields and methods that could refer to each other. However, even if those methods were virtual, they would impose fixed argument/return types on the descendants, the avoidance of which was the rationale for using generics in the first place.
So this strategy is only good for fields and methods that don't need to specialize in the descendant types... for example an object counter.
Conclusions
This question turns out to concern the somewhat-known "Curiously recurring template pattern": http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern. Even though it seems what one is trying to accomplish is simple, there are theoretical problems behind the scenes.
The situation appears to call for a language keyword meaning something like "Same type as my enclosing class". However that apparently leads to covariance/contravariance issues -- violations of the rules of which types can substitute for which in inheritance hierachies. That said, it seems Delphi doesn't go as far as C# to permit as much of a partial solution.
Of course, I'd be happy to learn that there is a way to go further!
Oh, and I don't feel too bad struggling to get to the bottom of this -- even Ken Arnold thinks it's difficult: https://weblogs.java.net/blog/arnold/archive/2005/06/generics_consid.html#comment-828994
:-)

How to overload a function based on the result type?

just a question, i have:
myclass = class
public
function Funct1: String;
function Funct2: Integer;
end;
It turn me error, so i have tried with:
myclass = class
public
function Funct1: String; overload;
function Funct2: Integer; overload;
end;
but same problem; delphi tell me that has same parameter.
Now, i ask, is possible to do in mode to have more function with same name but with different output as in example?
Thanks very much for help.
UPDATE
Sorry, i done a error, not funct1 and funct2, but both funct1, so:
myclass = class
public
function Funct1: String; overload;
function Funct1: Integer; overload;
end;
Doing so, compiler return me this error:
[DCC Error] Project1.dpr(15): E2252 Method 'funct1' with identical parameters already exists
[DCC Error] Project1.dpr(22): E2037 Declaration of 'funct1' differs from previous declaration
Of course, i know becouse give error and need change name to one of both function (for it me confused before) but i wanted know if there was some trick or other solution for to have a situation as this without error.
Thanks again.
You could turn the function into a procedure taking a var parameter:
myclass = class
public
procedure Funct1(var AResult: String); overload;
procedure Funct1(var AResult: Integer); overload;
end;
Firstly, for functions to be overloaded, they have to be named the same.
Secondly, this is not possible to do. Overloaded functions must have different parameters.
In your case, there is no way the compiler can tell which of your functions to call (assumed that both are renamed to Funct1):
var
v: Variant;
mc: myclass;
begin
v := mc.Funct1;
end;
What you post doesn't make sense. The first example should compile without any problem, as the functions have different names, Funct1 and Funct2.
Problems only arise when methods (or functions) have the same name. Then, normally, an overload directive would be in order, but overload can't distinguish functions on return value alone.
So assuming the names are the same, what you want is impossible. There is no way to overload these functions, if they don't have a different parameter signature. You can just give them different names, which is preferrable anyway, as they apparently do different things.
FWIW, your question is flawed by the fact that you apparently did not post the exact code with which you are actually having problems. Please always post the exact code that causes your problems, and if there are error messages, always post the exact error message (they can usually be copied using the usual copy keystrokes, e.g. Ctrl+C, even in most parts of the IDE or in message dialogs in Delphi). If there are any line numbers in the error message, indicate this in the source code you post, as we don't always have the same line numbers as you have.
if you want to overload methods with different return types, just add a dummy parameter with default value to allow the overload execution, but don't forget the parameter type should be different so the overload logic works e.g:
type
myclass = class
public
function Funct1(dummy: string = EmptyStr): String; overload;
function Funct1(dummy: Integer = -1): Integer; overload;
end;
use it like this
procedure tester;
var yourobject : myclass;
iValue: integer;
sValue: string;
begin
yourobject:= myclass.create;
iValue:= yourobject.Funct1(); //this will call the func with integer result
sValue:= yourobject.Funct1(); //this will call the func with string result
end;
also don't forget that this way your gonna have a problem with variants like in this example:
procedure tester;
var yourobject : myclass;
vValue: variant;
begin
yourobject:= myclass.create;
vValue:= yourobject.Funct1();
end;
until you implement the variant function too:
function Funct1(dummy: Variant = Unassigned): Variant; overload;
As was already stated, you cannot do it as you are wanting to do. However, you could just as easily implement each function with a different name such as "AsInteger" or "AsString". Your code will be clearer and this is generally the way it is done within the VCL.
TmyClass = class (TObject)
public
function AsString : string;
function AsInteger : Integer;
end;

RTTI: Can I Get a Type by Name?

Given a text string containing a type name, is there some way to get the appropriate type itself?
I'm looking to do something like this:
type
TSomeType<T> = class
// yadda yadda
end;
procedure DoSomething;
var
obj : TObject;
begin
o := TSomeType<GetTypeByName('integer')>.Create;
// do stuff with obj
end;
I've looked at several RTTI explanations online and looked through the Delphi units and don't see what I'm looking for. Is this possible?
No, generics are entirely compiletime.
The new RTTI unit in Delphi 2010 has a way of retrieving types declared in the interface section of units. For any given type, represented by a TRttiType instance, the TRttiType.QualifiedName property returns a name that can be used with TRttiContext.FindType later to retrieve the type. The qualified name is the full unit name (including namespaces, if they exist), followed by a '.', followed by the full type name (including outer types if it nested).
So, you could retrieve a representation of the Integer type (in the form of a TRttiType) with context.FindType('System.Integer').
But this mechanism can't be used to retrieve instantiations of generic types that weren't instantiated at compile time; instantiation at runtime requires runtime code generation.
You can always register your types into some sort of registry (managed by a string list or dictionary) and create a factory function to then return the appropriate object. Unfortunately you would have to know in advance what types you were going to need. Something similar to the Delphi functions RegisterClass and FindClass (in the classes unit). My thinking is to put the generic template type into the list directly.
An example of possible usage:
RegisterCustomType('Integer',TSomeType<Integer>);
RegisterCustomType('String',TSomeType<String>);
if FindCustomType('Integer') <> nil then
O := FindCustomType('Integer').Create;
EDIT: Here is a specific simple implementation using a tDictionary from Generics.Collections to handle the registry storage...I'll leave extracting this into useful methods as a simple exercise for the reader.
var
o : TObject;
begin
TypeDict := TDictionary<String,TClass>.Create;
TypeDict.Add('integer',TList<integer>);
if TypeDict.ContainsKey('integer') then
o := TypeDict.Items['integer'].Create;
if Assigned(o) then
ShowMessage(o.ClassName);
end;
Another EDIT: I was giving this some thought last night, and discovered another technique that you can merge into this concept. Interfaces. Here is a quick do nothing example, but can easily be extended:
TYPE
ITest = interface
['{0DD03794-6713-47A0-BBE5-58F4719F494E}']
end;
TIntfList<t> = class(TList<T>,ITest)
public
function QueryInterface(const IID: TGUID; out Obj): HRESULT; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
end;
procedure TForm1.Button7Click(Sender: TObject);
var
o : TObject;
fTestIntf : ITest;
begin
TypeDict := TDictionary<String,TClass>.Create;
TypeDict.Add('integer',TIntfList<integer>);
if TypeDict.ContainsKey('integer') then
o := TypeDict.Items['integer'].Create;
if Assigned(o) and Supports(o,ITest,fTestIntf) then
ShowMessage(o.ClassName);
end;
of course you would have to implement the QueryInterface, _AddRef and _Release methods and extend the interface to do something more useful.
If you forget generics and basic types, the "RegisterClass" function would be helpful. But it doesn't work for generics or basic types.

Resources