(I'm back with yet another question :-) )
Given the following PostScript code:
/riverside { 5 pop } def
/star { 6 pop 2 {riverside} repeat } def
star
I'm wondering how nested procedures should be handled. (I'm creating my own interpreter).
When I execute the star procedure, halfway it finds a nameObjec(riverside) and replaces it with an executable array containing the values from the riverside procedure and executes them.
If I execute the repeat operator the interpreter crashes because there is only one item left on the stack.
Should I actually execute an executable array (=procedure) directly when I'm already in an executable array (=prodecure), or should the executable arrays (=procedures) always be pushed on the (operand?/execution?)stack? or only be executed by another operator?
How many times should this riverside be executed? (2 or 3 times?) I guess 2?
For your information: this is the situation that I have when I execute star on the 3rd line (see the ERROR):
% begin execute 3rd line (star)
% OP = operand stack
% EX = execution stack
% handle 6
OP: 6
EX: star
% handle pop (removes 6 from OP)
OP: -
EX: star
% handle 2
OP: 2
EX: star
% set the riverside executable array on the EX, execute the values
OP: 2
EX: star riverside
% repeat operator:
CRASH, only one item on the OP left, but repeat operator requires 2 operands.
OP: 5
EX:
% end
Please shine a light on this matter, because it is somewhat complex/confusing :-)
Update:
another code sample might be this one:
/starside
{ 72 0 lineto
currentpoint translate
-144 rotate } def
/star
{ moveto
currentpoint translate
4 {starside} repeat
closepath
gsave
.5 setgray fill
grestore
stroke } def
200 200 star
showpage
when the interpreter tokenizes /star { moveto ... if it encounters the nested {starside} how will that be treated? (+ what if there was {starside 5 2 mul pop} instead of only {starside} ?)
I believe you need to look at section 3.5.3 of the PLRM. Although this deals with a simple executable array the concept is the same. When the token scanner encounters a '{' it starts to build an executable array. Until it reaches a matching '}' token the scanner simply stores what it encounters on the operand stack. When it encounters the matching '{' then the objects are converted into an executable array (and stored on the operand stack)
In the case of the scanner encountering an executable name, it stores the name on the operand stack. It does not execute the name, nor does it even perform lookup on it to retrieve the associated object.
So immediately before the execution of '}' in your example, the operand stack would contain twp objects, the '{' opening array, and the executable name riverside. When you encounter the '}' then the scanner creates the actual executable array and stores it on the operand stack. (Note, implementation details vary here)
So immediately before the execution of 'repeat' you would have two objects on the stack, the counter and an executable array containing a single executable name.
You don't look up the name until the executable array containing the name is executed.
This might make it clearer:
%!
/test {(This is my initial string\n) print} def
2 {test} repeat
2 {test} /test {(This is my second string\n) print} def repeat
Notice that I've redefined 'test' after creating the executable array containing the executable name 'test', yet the execution uses the later definition of test. As you can see, its vitally important not to do name lookup too early!
Related
I'm trying to implement a kind of "conditional :" in ATLAST, the reasoning being I have a file that gets FLOADed multiple times to handle multiple steps of my program flow (I'm essentially abusing Forth as an assembler, step 1 does a first parsing for references, etc. and in step 2 the instruction words actually emit bytes).
So when declaring words for "macros" in that file, it errors out in step 2, because they were already declared in step 1, but I also can't just FORGET them, because that would forget everything that came afterwards, such as the references I just collected in step 1.
So essentially I need a ": that only runs in step 1", my idea being something like this:
VARIABLE STAGE
: ::
STAGE # 0 = IF
[COMPILE] : ( be a word declaration )
EXIT
THEN
BEGIN ( eat the disabled declaration )
' ( get the address of the next word )
['] ; ( get the address of semicolon )
= ( loop until they are equal )
UNTIL
; IMMEDIATE
:: FIVE 5 ; ( declares as expected )
FIVE . ( prints 5 )
1 STAGE ! ( up to here everything's fine )
:: FIVE 6 ; ( is supposed to do nothing, but errors out )
FIVE . ( is supposed to print 5 again )
The traced error message (starting from 1 STAGE !):
Trace: !
Trace: ::
Trace: STAGE
Trace: #
Trace: (LIT) 0
Trace: =
Trace: ?BRANCH
Trace: '
Trace: (LIT) 94721509587192
Trace: =
Trace: ?BRANCH
Trace: '
Word not specified when expected.
Trace: ;
Compiler word outside definition.
Walkback:
;
KEY ( -- ch ) as common in some other Forths for reading a single character from the input stream ( outside the :: declaration, since it's IMMEDIATE ) doesn't exist in ATLAST, the only related words I could find are:
': is supposed to read a word from the input stream, then pushes its compile address
[']: like ' but reads a word from the current line (the inside of the :: declaration)
(LIT)/(STRLIT): are supposed to read literals from the input stream according to the documentation, I could only ever make them segmentation fault, I think they're for compiler-internal use only (e.g., if the compiler encounters a number literal it will compile the (LIT) word to make it push that number onto the stack)
There aren't any WORD or PARSE either, as in some other Forths.
As you can see, ' is struggling actually getting something from the input stream for some weird reason, and it looks like ['] is failing to capture the ; which then errors out because it's suddenly encountering a ; where it doesn't belong.
I suspect it actually ran ' ['], even though it's supposed to work on the input stream, not the immediate line, and I'm clearly in compile mode there.
I did a similar thing with conditionally declaring variables, there it was rather easy to just [COMPILE] ' DROP to skip a single word (turning RES x into ' x DROP), but here I'm pretty sure I can't actually compile those instructions, because I can't emit a loop outside of a declaration. Unless there is a way to somehow compile similar code that recursively gets rid of everything until the ;.
A problem is that ' cannot find a number. A possible solution is to use a special dummy name for the definition, instead of skip it over:
: ::
STAGE # 0 = IF : EXIT THEN
' DROP \ this xt isn't needed
" : _dummy" EVALUATE ( -- n ) DROP
;
Or maybe use a new name every time:
: ::
STAGE # 0 = IF : EXIT THEN
' >NAME # \ ( s1 ) \ should be checked
": _dummy_" DUP >R S+
R> EVALUATE ( -- n ) DROP
;
But due to non standard words it might not work. Another problem is that non colon-definitions are out of the scope.
Perhaps, a better solution is a preprocessing by external means.
It appears that ATLAST is a primitive Forth, that doesn't allow you to go to a more sophisticated handling of sources. But all is not lost!
For example, a Forth implementation according to the ISO standard will handle the matter with ease with one or more of: REQUIRE [IF] [THEN] [DEFINED] SRC >IN NAME WORD FIND.
As you have a Forth, you can steal these words from another Forth and compile the code.
Another solution that may help directly is executing EXIT in interpret mode while loading a file.
You have to find out whether you can create a flag whether to abandon the input source. Then this definition might help:
: ?abandon IF S" EXIT" EVALUATE THEN ;
S" FIVE" FOUND ?abandon
Note that ?abandon must be executed in interpret mode.
When reading about the tick (') operator I wondered if it can be useful inside a word definition. I know that there is ['] to be used inside a definition, but I thought about using it to read the word name following invocation.
An example:
4 variable cnt
: cycle: ( arg fn -- )
'
4 cnt !
begin
cr
dup execute
-1 cnt +!
cnt # 0 = until
drop
;
I can use cycle: to repeat some word invocation, as follows.
: hello ." hello" ;
cycle: hello
Which prints hello four times, as expected.
But the following code won't define a word that prints hello four times:
: 4hello cycle: hello ;
The tick operator still expects a word from the input stream following invocation of 4hello.
Is it possible to inject it somehow when using cycle: in a word definition, so it won't "leak" outside?
Yes, it's possible. You would have to make cycle: immediate. And then also change it to postpone its actions, rather than perform them at runtime.
Postponing means to delay the actions of words. Immediate words are compiled into the current definition, and normal words are arranged to be compiled when the current definition is executing.
In this case it might look something like this.
: (cycle) 4 0 do dup execute loop drop ;
: cycle: ' postpone literal postpone (cycle) ; immediate
Note that this version no longer works outside definitions.
I'm actually using Z3py for scheduling solving problems and I'm trying to represent a 2 processors system where 4 process of different execution time must be done.
My actual data are :
Process 1 : Arrival at 0 and execution time of 4
Process 2 : Arrival at 1 and execution time of 3
Process 3 : Arrival at 3 and execution time of 5
Process 4 : Arrival at 1 and execution time of 2
I'm actually trying to represent each process while decomposing each in subprocess of equal time so my datatypes are like this :
Pn = Datatype('Pn')
Pn.declare('1')
Pn.declare('2')
Pn.declare('3')
Pn.declare('4')
Pt = Datatype('Pt')
Pt.declare('1')
Pt.declare('2')
Pt.declare('3')
Pt.declare('4')
Pt.declare('5')
Process = Datatype('Process')
Process.declare('cons' , ('name',Pn) , ('time', Pt))
Process.declare('idle')
where pn and pt are the process name and the part of the process (process 1 is in 4 parts, ...)
But now I don't know how I can represent my processors to add 3 rules I need : unicity (each sub process must be done 1 and only 1 time by only 1 processor) check arrival (the first part of a process can't be processed before it arrived) and order (each part of a process must be processed after the precedent)
So I was thinking of using arrays to represent my 2 processors with this kind of declaration :
P = Array('P', IntSort() , Process)
But when I tried to execute it I got an error message saying :
Traceback (most recent call last):
File "C:\Users\Alexis\Desktop\test.py", line 16, in <module>
P = Array('P', IntSort() , Process)
File "src/api/python\z3.py", line 3887, in Array
File "src/api/python\z3.py", line 3873, in ArraySort
File "src/api/python\z3.py", line 56, in _z3_assert
Z3Exception: 'Z3 sort expected'
And know I don't know how handle it... must I create a new datatype and figure a way to add my rules ? or Is there a way to add datatypes to array which would let me create rules like this :
unicity = ForAll([x,y] , (Implies(x!=y,P[x]!=P[y])))
Thanks in advance
There is a tutorial on using Datatypes from the Python API. A link to the tutorial is:
http://rise4fun.com/Z3Py/tutorialcontent/advanced#h22
It shows how to create a list data-type and use the "create()" method to instantiate a Sort object from the object used when declaring the data-type. For your example, it suffices to add calls to "create()" in the places where you want to use the declared type as a sort.
See: http://rise4fun.com/Z3Py/rQ7t
Regarding the rest of the case study you are looking at: it is certainly possible to express the constrsaints you describe using quantifiers and arrays. You could also consider somewhat more efficient encodings:
Instead of using an array, use a function declaration. So P would be declared as a unary function:
P = Function('P', IntSort(), Process.create()).
Using quantifiers for small finite domain problems may be more of an overhead than a benefit. Writing down the constraints directly as a finite conjunction saves the overhead of instantiating quantifiers possibly repeatedly. That said, some quantified axioms can also be optimized. Z3 automatically compiles axioms of the form: ForAll([x,y], Implies(x != y, P(x) != P(y))) into
an axioms of the form Forall([x], Pinv(P(x)) == x), where "Pinv" is a fresh function. The new axiom still enforces that P is injective but requires only a linear number of instantiations, linear in the number of occurrences of P(t) for some term 't'.
Have fun!
I have many text files of this format
....
<snip>
'FOP' 0.19 1 24 1 25 7 8 /
'FOP' 0.18 1 24 1 25 9 11 /
/
TURX
560231
300244
70029
200250
645257
800191
900333
600334
770291
300335
220287
110262 /
SUBTRACT
'TURX' 'TURY'/
</snip>
......
where the portions I snipped off contain other various data in various formats. The file format is inconsistent (machine generated), the only thing one is assured of is the keyword TURX which may appear more than once. If it appears alone on one line, then the next few lines will contain numbers that I need to fetch into an array. The last number will have a space then a forward slash (/). I can then use this array in other operations afterwards.
How do I "search" or parse a file of unknown format in fortran, and how do I get a loop to fetch the rest of the data, please? I am really new to this and I HAVE to use fortran. Thanks.
Fortran 95 / 2003 have a lot of string and file handling features that make this easier.
For example, this code fragment to process a file of unknown length:
use iso_fortran_env
character (len=100) :: line
integer :: ReadCode
ReadLoop: do
read (75, '(A)', iostat=ReadCode ) line
if ( ReadCode /= 0 ) then
if ( ReadCode == iostat_end ) then
exit ReadLoop
else
write ( *, '( / "Error reading file: ", I0 )' ) ReadCode
stop
end if
end if
! code to process the line ....
end do ReadLoop
Then the "process the line" code can contain several sections depending on a logical variable "Have_TURX". If Have_TRUX is false you are "seeking" ... test whether the line contains "TURX". You could use a plain "==" if TURX is always at the start of the string, or for more generality you could use the intrinsic function "index" to test whether the string "line" contains TURX.
Once the program is in the mode Have_TRUX is true, then you use "internal I/O" to read the numeric value from the string. Since the integers have varying lengths and are left-justified, the easiest way is to use "list-directed I/O": combining these:
read (line, *) integer_variable
Then you could use the intrinsic function "index" again to test whether the string also contains a slash, in which case you change Have_TRUX to false and end reading mode.
If you need to put the numbers into an array, it might be necessary to read the file twice, or to backspace the file, because you will have to allocate the array, and you can't do that until you know the size of the array. Or you could pop the numbers into a linked list, then when you hit the slash allocate the array and fill it from the linked list. Or if there is a known maximum number of values you could use a temporary array, then transfer the numbers to an allocatable output array. This is assuming that you want the output argument of the subroutine be an allocatable array of the correct length, and the it returns one group of numbers per call:
integer, dimension (:), allocatable, intent (out) :: numbers
allocate (numbers (1: HowMany) )
P.S. There is a brief summary of the language features at http://en.wikipedia.org/wiki/Fortran_95_language_features and the gfortran manual has a summary of the intrinsic procedures, from which you can see what built in functions are available for string handling.
I'll give you a nudge in the right direction so that you can finish your project.
Some basics:
Do/While as you'll need some sort of loop
structure to loop through the file
and then over the numbers. There's
no for loop in Fortran, so use this
type.
Read
to read the strings.
To start you need something like this:
program readlines
implicit none
character (len=30) :: rdline
integer,dimension(1000) :: array
! This sets up a character array with 30 positions and an integer array with 1000
!
open(18,file='fileread.txt')
do
read(18,*) rdline
if (trim(rdline).eq.'TURX') exit !loop until the trimmed off portion matches TURX
end do
See this thread for way to turn your strings into integers.
Final edit: Looks like MSB has got most of what I just found out. The iostat argument of the read is the key to it. See this site for a sample program.
Here was my final way around it.
PROGRAM fetchnumbers
implicit none
character (len=50) ::line, numdata
logical ::is_numeric
integer ::I,iost,iost2,counter=0,number
integer, parameter :: long = selected_int_kind(10)
integer, dimension(1000)::numbers !Can the number of numbers be up to 1000?
open(20,file='inputfile.txt') !assuming file is in the same location as program
ReadLoop: do
read(20,*,iostat=iost) line !read data line by line
if (iost .LT. 0) exit !end of file reached before TURX was found
if (len_trim(line)==0) cycle ReadLoop !ignore empty lines
if (index(line, 'TURX').EQ.1) then !prepare to begin capturing
GetNumbers: do
read(20, *,iostat=iost2)numdata !read in the numbers one by one
if (.NOT.is_numeric(numdata)) exit !no more numbers to read
if (iost2 .LT. 0) exit !end of file reached while fetching numbers
read (numdata,*) number !read string value into a number
counter = counter + 1
Storeloop: do I =1,counter
if (I<counter) cycle StoreLoop
numbers(counter)=number !storing data into array
end do StoreLoop
end do GetNumbers
end if
end do ReadLoop
write(*,*) "Numbers are:"
do I=1,counter
write(*,'(I14)') numbers(I)
end do
END PROGRAM fetchnumbers
FUNCTION is_numeric(string)
IMPLICIT NONE
CHARACTER(len=*), INTENT(IN) :: string
LOGICAL :: is_numeric
REAL :: x
INTEGER :: e
is_numeric = .FALSE.
READ(string,*,IOSTAT=e) x
IF (e == 0) is_numeric = .TRUE.
END FUNCTION is_numeric
I've been working on Issue 14 on the PascalScript scripting engine, in which using a Goto command to jump out of a Case block produces a compiler error, even though this is perfectly valid (if ugly) Object Pascal code.
Turns out the ProcessCase routine in the compiler calls HasInvalidJumps, which scans for any Gotos that lead outside of the Case block, and gives a compiler error if it finds one. If I comment that check out, it compiles just fine, but ends up crashing at runtime. A disassembly of the bytecode shows why. I've annotated it with the original script code:
[TYPES]
<SNIPPED>
[VARS]
Var [0]: 27 Class TFORM
Var [1]: 28 Class TAPPLICATION
Var [2]: 11 S32 //i: integer
[PROCS]
Proc [0] Export: !MAIN -1
{begin}
[0] ASSIGN GlobalVar[2], [1]
{ i := 1;}
[15] PUSHTYPE 11(S32) // 1
[20] ASSIGN Base[1], GlobalVar[2]
{ case i of}
[31] PUSHTYPE 25(U8) // 2
{ 0:}
[36] COMPARE into Base[2]: [0] = Base[1]
[57] COND_NOT_GOTO currpos + 5 Base[2] [72]
{ end;}
[67] GOTO currpos + 41 [113]
{ 1:}
[72] COMPARE into Base[2]: [1] = Base[1]
[93] COND_NOT_GOTO currpos + 10 Base[2] [113]
{ goto L1;}
[103] GOTO currpos + 8 [116]
{ end;}
[108] GOTO currpos + 0 [113]
{ end; //<-- case}
[113] POP // 1
[114] POP // 0
{ Exit;}
[115] RET
{L1:
Writeln('Label L1');}
[116] PUSHTYPE 17(WideString) // 1
[121] ASSIGN Base[1], ['????????']
[144] CALL 1
{end.}
[149] POP // 0
[150] RET
Proc [1]: External Decl: \00\00 WRITELN
The "goto L1;" statement at 103 skips the cleanup pops at 113 and 114, which leaves the stack in an invalid state.
Delphi doesn't have any trouble with this, because it doesn't use a calculation stack. PascalScript, though, is not as fortunate. I need some way to make this work, as this pattern is very common in some legacy scripts from a much simpler system with little in the way of control structures that I've translated to PascalScript and need to be able to support.
Anyone have any ideas how to patch the codegen so it'll clean up the stack properly?
IIRC the goto rules in classic pascals were:
jumps are only allowed out of a block (iow from a higher to a lower nesting level on the "same" branch of the tree)
from local procedures to their parents.
The later was afaik never supported by Borland derived Pascals, but the first still holds.
So you need to generate exiting code like Martin says, but possibly it can be for multiple block levels, so you can't have a could codegeneration for each goto, but must generate code (to exit the precise number of needed blocks).
A typical test pattern is to exit from multiple nested ifs (possibly within a loop) using a goto, since that was a classic microoptimization that was faster at least up to D7.
Keep in mind that the if evaluation(s) and the begin..end blocks of their branches might have generated temps that need cleanup.
---------- added later
I think the codegenerator needs a way to walk the scopes between the goto and its endpoint, generating the relevant exit code for blocks along the way. That way a fix works for the general case and not just this example.
Since you can only jump out of scopes, and not into it that might not that be that hard.
IOW generate something that is equivalent to (for a hypothetical double case block)
Lgoto1gluecode:
// exit code first block
pop x
pop y
// exit code first block
pop A
pop B
goto real_goto_destination
Additional analysis can be done. E.g. if there is only one scope, and it has already a cleanup exit label, you can jump directly. If you know for certain that the above pop's are only discarded values (and not saves of registers) you can do them at once with add $16,%esp (4*4 byte values) etc.
The straightforward solution would be:
When generating a GOTO for goto statement, prefix the GOTO with the same cleanup code that comes before RET.
It looks to me like the calculation of how far to jump forward is the problem. I would have to spend some time looking at the implementation of the parser to help further, but my guess would be that additional handling must be performed when using a goto and there are values on the stack AND the goto would be placed after those values would be removed from the stack. Of course to determine this you would need to save the current location being parsed (the goto) and the forward parse to the target location watching for stack changes, and if so then to either adjust the goto location backwards, or inject the code as Martin suggested.