How to extract a submatrix of a SparseMat - opencv

I have a SparseMat A with 50x50 dimensions.
I have another matrix B with 10x10 dimensions.
I want to add a submatrix of A (0~10 x 0~10) with B.
How to extract submatrix of a SparseMat.
I did like in Mat as A(Range(0,10), Range(0,10)), the error is "call of an object of a class type without appropriate operator() or conversion functions to pointer-to-function type". How to solve that problem?
Thanks

These functions are not implemented in OpenCV (very few operations are actually implemented on sparse matrices).
What you need to do is to loop over the sparse matrix using the provided SparseMatConstIterator_<T> iterator, test if the position of the non-zero point is in your subregion of interest, then write it.
You have to loop over the non-zero elements of your input sparse matrix, but you can maybe add a test for early exit when the target matrix is full.
By the way, 50x50 is not so big. You can maybe switch to dense matrices for easier matrix handling. I work with 1024x1024 matrices in OpenCV on a regular basis.

Related

How do I solve Euler Lagrange equation for image de-blurring?

This is one of the two Euler Lagrange equations for de-blurring which I need to solve:
http://i.stack.imgur.com/AtCLZ.jpg
u_r is the reference image, which is known. u_0 is the original blurred image. k is the blurring kernel, unknown. lambda is a constant which is also known, or rather empirically determined. I need to solve this equation for k.
I tried solving it from the Fourier domain, but the results were disappointing due to some reason. The output image did not look much different from the input image, but pixel level difference of 2 or 3 gray-scale levels were there.
In all the papers that I found, they say that they solved the equation in code, using lagged diffusivity to make it linear and then using the conjugate gradient or fixed point method. But I can't get my head around this, because the kernel k which is being convolved with image u_r, is an unknown. How do I implement it then, in code? I can't if the unknown k is in a convolution.

Rotating 1d FFT to get 2D FFT?

I have a blurry image with a sharp edge and I want to use the profile of that sharp edge to estimate the point spread function (PSF) of the imaging system (assuming that it is symmetric). The profile of the edge gives me the "edge spread function" (ESF) and the derivative of that gives me the "line spread function" (LSF). I am trying to follow these directions that I found in an old paper on how to convert from the LSF to the PSF:
"If we form the one-dimensional Fourier transform of the LSF and rotate the resulting curve about its vertical axis, the surface thus generated proves to be the two-dimensional fourier transform of the PSF. Hence it is merely necessary to take a two-dimensional inverse Fourier transform to obtain the PSF"
I can't seem to get this to work. The 2D FFT of a PSF-like function (for example a 2d gaussian) has lots of alternative positive and negative values, but if I rotate a 1D FFT, I get concentric rings of positive or negative values and the inverse transform looks nothing like a point-spread function. Am I missing a step or misunderstanding something? Any help would be appreciated! Thanks!
Edit: Here is some code showing my attempt to follow the procedure described
;generate x array
x=findgen(1000)/999*50-25
;generate gaussian test function in 1D
;P[0] = peak value
;P[1] = centroid
;P[2] = sigma
;P[3] = base level
P=[1.0,0.0,4.0,0.0]
test1d=gaussian_1d(x,P)
;Take the FFT of the test function
fft1d=fft(test1d)
;create an array with the frequency values for the FFT array, following the conventions used by IDL
;This piece of code to find freq is straight from IDL documentation: http://www.exelisvis.com/docs/FFT.html
N=n_elements(fft1d)
T=x[1]-x[0] ;T = sampling interval
fftx=(findgen((N-1)/2)+1)
is_N_even=(N MOD 2) EQ 0
if (is_N_even) then $
freq=[0.0,fftx,N/2,-N/2+fftx]/(N*T) $
else $
freq=[0.0,fftx,-(N/2+1)+fftx]/(N*T)
;Create a 1000x1000 array where each element holds the distance from the center
dim=1000
center=[(dim-1)/2.0,(dim-1)/2.0]
xarray=cmreplicate(findgen(dim),dim)
yarray=transpose(cmreplicate(findgen(dim),dim))
rarray=sqrt((xarray-center[0])^2+(yarray-center[1])^2)
rarray=rarray/max(rarray)*max(freq) ;scale rarray so max value is equal to highest freq in 1D FFT
;rotate the 1d FFT about zero to get a 2d array by interpolating the 1D function to the frequency values in the 2d array
fft2d=rarray*0.0
fft2d(findgen(n_elements(rarray)))=interpol(fft1d,freq,rarray(findgen(n_elements(rarray))))
;Take the inverse fourier transform of the 2d array
psf=fft(fft2d,/inverse)
;shift the PSF to be centered in the image
psf=shift(psf,500,500)
window,0,xsize=1000,ysize=1000
tvscl,abs(psf) ;visualize the absolute value of the result from the inverse 2d FFT
I don't know IDL, but I think your problem here is that you're taking the FFT of signals that are centered, where by default the function expects 0-frequency components at the beginning of the array.
A quick search for the proper way to do this in IDL indicates the CENTER keyword is what you're looking for.
CENTER
Set this keyword to shift the zero-frequency component to the center of the spectrum. In the forward direction, the resulting Fourier transform has the zero-frequency component shifted to the center of the array. In the reverse direction, the input is assumed to be a centered Fourier transform, and the coefficients are shifted back before performing the inverse transform.
Without letting the FFT routine know where the center of your signal is, it will seem shifted by N/2. In the converse domain this is a strong phase shift that will appear as if values are alternating positive and negative.
Ok, looks like I have solved the problem. The main issue seems to be that I needed to use the absolute value of the FFT results, rather than the complex array that is returned by default. Using the /CENTER keyword also helped make the indexing of the FFT result much simpler than IDL's default. Here is the working version of the code:
;generate x array
x=findgen(1000)/999*50-25
;generate lorentzian test function in 1D
;P[0] = peak value
;P[1] = centroid
;P[2] = fwhm
;P[3] = base level
P=[1.0,0.0,2,0.0]
test1d=lorentzian_1d(x,P)
;Take the FFT of the test function
fft1d=abs(fft(test1d,/center))
;Create an array of frequencies corresponding to the FFT result
N=n_elements(fft1d)
T=x[1]-x[0] ;T = sampling interval
freq=findgen(N)/(N*T)-N/(2*N*T)
;Create an array where each element holds the distance from the center
dim=1000
center=[(dim-1)/2.0,(dim-1)/2.0]
xarray=cmreplicate(findgen(dim),dim)
yarray=transpose(cmreplicate(findgen(dim),dim))
rarray=sqrt((xarray-center[0])^2+(yarray-center[1])^2)
rarray=rarray/max(rarray)*max(freq) ;scale rarray so max value is equal to highest freq in 1D FFT
;rotate the 1d FFT about zero to get a 2d array by interpolating the 1D function to the frequency values in the 2d array
fft2d=rarray*0.0
fft2d(findgen(n_elements(rarray)))=interpol(fft1d,freq,rarray(findgen(n_elements(rarray))))
;Take the inverse fourier transform of the 2d array
psf=abs(fft(fft2d,/inverse,/center))
;shift the PSF to be centered in the image
psf=shift(psf,dim/2.0,dim/2.0)
psf=psf/max(psf)
window,0,xsize=1000,ysize=1000
tvscl,real_part(psf) ;visualize the resulting PSF
;Test the performance by integrating the PSF in one dimension to recover the LSF
psftotal=total(psf,1)
plot,x*sqrt(2),psftotal/max(psftotal),thick=2,linestyle=2
oplot,x,test1d

Converting matches from 8-bit 4 channels to 64-bit 1 channel in OpenCV

I have a vector of Point2f which have color space CV_8UC4 and need to convert them to CV_64F, is the following code correct?
points1.convertTo(points1, CV_64F);
More details:
I am trying to use this function to calculate the essential matrix (rotation/translation) through the 5-point algorithm, instead of using the findFundamentalMath included in OpenCV, which is based on the 8-point algorithm:
https://github.com/prclibo/relative-pose-estimation/blob/master/five-point-nister/five-point.cpp#L69
As you can see it first converts the image to CV_64F. My input image is a CV_8UC4, BGRA image. When I tested the function, both BGRA and greyscale images produce valid matrices from the mathematical point of view, but if I pass a greyscale image instead of color, it takes way more to calculate. Which makes me think I'm not doing something correctly in one of the two cases.
I read around that when the change in color space is not linear (which I suppose is the case when you go from 4 channels to 1 like in this case), you should normalize the intensity value. Is that correct? Which input should I give to this function?
Another note, the function is called like this in my code:
vector<Point2f>imgpts1, imgpts2;
for (vector<DMatch>::const_iterator it = matches.begin(); it!= matches.end(); ++it)
{
imgpts1.push_back(firstViewFeatures.second[it->queryIdx].pt);
imgpts2.push_back(secondViewFeatures.second[it->trainIdx].pt);
}
Mat mask;
Mat E = findEssentialMat(imgpts1, imgpts2, [camera focal], [camera principal_point], CV_RANSAC, 0.999, 1, mask);
The fact I'm not passing a Mat, but a vector of Point2f instead, seems to create no problems, as it compiles and executes properly.
Is it the case I should store the matches in a Mat?
I am no sure do you mean by vector of Point2f in some color space, but if you want to convert vector of points into vector of points of another type you can use any standard C++/STL function like copy(), assign() or insert(). For example:
copy(floatPoints.begin(), floatPoints.end(), doublePoints.begin());
or
doublePoints.insert(doublePoints.end(), floatPoints.begin(), floatPoints.end());
No, it is not. A std::vector<cv::Pointf2f> cannot make use of the OpenCV convertTo function.
I think you really mean that you have a cv::Mat points1 of type CV_8UC4. Note that those are RxCx4 values (being R and C the number of rows and columns), and that in a CV_64F matrix you will have RxC values only. So, you need to be more clear on how you want to transform those values.
You can do points1.convertTo(points1, CV_64FC4) to get a RxCx4 matrix.
Update:
Some remarks after you updated the question:
Note that a vector<cv::Point2f> is a vector of 2D points that is not associated to any particular color space, they are just coordinates in the image axes. So, they represent the same 2D points in a grey, rgb or hsv image. Then, the execution time of findEssentialMat doesn't depend on the image color space. Getting the points may, though.
That said, I think your input for findEssentialMat is ok (the function takes care of the vectors and convert them into their internal representation). In this cases, it is very useful to draw the points in your image to debug the code.

Matlab Camera Calibration - Correct lens distortion

In the Computer Vision System Toolbox for Matlab there are three types of interpolation methods used for Correct lens distortion.
Interpolation method for the function to use on the input image. The interp input interpolation method can be the string, 'nearest', 'linear', or 'cubic'.
My question is: what is the difference between 'nearest', 'linear', or 'cubic' ? and which one implemented in "Zhang" and "Heikkila, J, and O. Silven" methods.
I can't access the paged at the link you wrote in your question (it asks for a username and password) and so I assume your linked page has the same contents of the page http://www.mathworks.it/it/help/vision/ref/undistortimage.html which I quote here:
J = undistortImage(I,cameraParameters,interp) removes lens distortion from the input image, I and specifies the
interpolation method for the function to use on the input image.
Input Arguments
I — Input image
cameraParameters — Object for storing camera parameters
interp — Interpolation method
'linear' (default) | 'nearest' | 'cubic'
Interpolation method for the function to use on
the input image. The interp input interpolation method can be the
string, 'nearest', 'linear', or 'cubic'.
Furthermore, I assume you are referring to these papers:
ZHANG, Zhengyou. A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22.11: 1330-1334.
HEIKKILA, Janne; SILVEN, Olli. A four-step camera calibration procedure with implicit image correction. In: Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on. IEEE, 1997. p. 1106-1112.
I have searched for the word "interpolation" in the two pdf documents Zhang and Heikkila and Silven and I did not find any direct statement about the interpolation method they have used.
To my knowledge, in general, a camera calibration method is concerned on how to estimate the intrinsic, extrinsic and lens distortion parameters (all these parameters are inside the input argument cameraParameters of Matlab's undistortImage function); the interpolation method is part of a different problem, i.e. the problem of "Geometric Image Transformations".
I quote from the OpenCV's page Geometric Image Transformation (I have slightly modified the original omitting some details and adding some definitions, I assume you are working with grey level image):
The functions in this section perform various geometrical
transformations of 2D images. They do not change the image content but
deform the pixel grid and map this deformed grid to the destination
image. In fact, to avoid sampling artifacts, the mapping is done in
the reverse order, from destination to the source. That is, for each
pixel (x, y) of the destination image, the functions compute
coordinates of the corresponding “donor” pixel in the source image and
copy the pixel value:
dst(x,y) = src(f_x(x,y), f_y(x,y))
where
dst(x,y) is the grey value of the pixel located at row x and column y in the destination image
src(x,y) is the grey value of the pixel located at row x and column y in the source image
f_x is a function that maps the row x and the column y to a new row, it just uses coordinates and not the grey level.
f_y is a function that maps the row x and the column y to a new column, it just uses coordinates and not the grey level.
The actual implementations of the geometrical transformations, from
the most generic remap() and to the simplest and the fastest resize()
, need to solve two main problems with the above formula:
• Extrapolation of non-existing pixels. Similarly to the filtering
functions described in the previous section, for some (x,y) , either
one of f_x(x,y) , or f_y(x,y) , or both of them may fall outside of
the image. In this case, an extrapolation method needs to be used.
OpenCV provides the same selection of extrapolation methods as in the
filtering functions. In addition, it provides the method
BORDER_TRANSPARENT . This means that the corresponding pixels in the
destination image will not be modified at all.
• Interpolation of pixel
values. Usually f_x(x,y) and f_y(x,y) are floating-point numbers. This
means that <f_x, f_y> can be either an affine or
perspective transformation, or radial lens distortion correction, and
so on. So, a pixel value at fractional coordinates needs to be
retrieved. In the simplest case, the coordinates can be just rounded
to the nearest integer coordinates and the corresponding pixel can be
used. This is called a nearest-neighbor interpolation. However, a
better result can be achieved by using more sophisticated
interpolation methods, where a polynomial function is fit into some
neighborhood of the computed pixel (f_x(x,y), f_y(x,y)), and then the
value of the polynomial at (f_x(x,y), f_y(x,y)) is taken as the
interpolated pixel value. In OpenCV, you can choose between several
interpolation methods. See resize() for details.
For a "soft" introduction see also for example Cambridge in colour - DIGITAL IMAGE INTERPOLATION.
So let's say you need the grey level of pixel at x=20.2 y=14.7, since x and y are number with a fractional part different from zero you will need to "invent" (compute) the grey level in some way. In the simplest case ('nearest' interpolation) you just say that the grey level at (20.2,14.7) is the grey level you retrieve at (20,15), it is called "nearest" because 20 is the nearest integer value to 20.2 and 15 is the nearest integer value to 14.7.
In the (bi)'linear' interpolation you will compute the value at (20.2,14.7) with a combination of the grey levels of the four pixels at (20,14), (20,15), (21,14), (21,15); for the details on how to compute the combination see the Wikipedia page which has a numeric example.
The (bi)'cubic' interpolation considers the combination of sixteen pixels in order to compute the value at (20.2,14.7), see the Wikipedia page.
I suggest you to try all the three methods, with the same input image, and see the differences in the output image.
Interpolation method is actually independent of the camera calibration. Any time you apply a geometric transformation to an image, such as rotation, re-sizing, or distortion compensation, the pixels in the new image will correspond to points between the pixels of the old image. So you have to interpolate their values somehow.
'nearest' means you simply use the value of the nearest pixel.
'linear' means you use bi-linear interpolation. The new pixel's value is a weighted sum of the values of the neighboring pixels in the input image, where the weights are proportional to distances.
'cubic' means you use a bi-cubic interpolation, which is more complicated than bi-linear, but may give you a smoother image.
A good description of these interpolation methods is given in the documentation for the interp2 function.
And finally, just to clarify, the undistortImage function is in the Computer Vision System Toolbox.

using FindExtrinsicCameraParams2 in OpenCV

I have 4 coplanar points in object coordinates and the correspoinding image points (on image plane). I want to compute the relative translation and rotation of the object plane with respect to the camera.
FindExtrinsicCameraParams2 is supposed to be the solution. But I'm having troubles with using it. Errors keep on showing when compiling
Has anyone successfully used this function in OpenCV?? Could I have some comments or sample code to use this function??
Thank you!
I would use the OpenCV function FindHomography() as it is simpler and you can converto easily from homography to extrinsic parameters.
You have to call the function like this
FindHomography(srcPoints, dstPoints, H, method, ransacReprojThreshold=3.0, status=None)
method is CV_RANSAC. If you pass more than 4 points, RANSAC will select the best 4-point set to satisfy the model.
You will get the homography in H, and if you want to convert it to extrinsic parameters you should do what I explain in this post.
Basically, the extrinsics matrix (Pose), has the first, second and fourth columns equal tp homography. The third column is redundant because it is the crossproduct of columns one and two.
After several days testing OpenCV functions related to 3D calibration, getting over all the errors, awkward output numbers, I finally get the correct outputs for these functions including findHomography, solvePnP (new version of FindExtrinsicCameraParams) and cvProjectPoints. Some of the tips have been discussed in use OpenCV cvProjectPoints2 function.
These tips are also applied for the error in this post. Specifically, in this post, my violation is passing float data to CV_64F Mat. All done now!!
You can use CalibrateCamera2.
objectPts - your 4 coplanar points
imagePts - your corresponding image points.
This method will compute instrinsic matrix and distortion coefficients, which tell you how the objectPts have been projected as the imagePts on to the camera's imaging plane.
There are no extrinsic parameters to compute here since you are using only 1 camera. If you used 2 cameras, then you are looking at computing Extrinsic Matrix using StereoCalibrate.
Ankur

Resources