crawl-66-249-64-13.hero.com - - [17/Oct/2004:04:40:15 +0100] "GET /rubbish.txt HTTP/1.0" 200 25 "-" "Hero/2.1
(+http://www.Hero.com/rub.html)"
The bits in bold are the parts I want to extract
I currently have
"^(.*) - .* \["
I am using regular expressions in grep anyone have any ideas? I am using a bash script
I know awk is a good way to do it but I want it in a table not just printed
#!/bin/sh
var='crawl-66-249-64-13.hero.com - - [17/Oct/2004:04:40:15 +0100] "GET /rubbish.txt HTTP/1.0" 200 25 "-" "Hero/2.1 (+http://www.Hero.com/rub.html)"'
echo "${var}" | \
sed -e 's/^\([-a-zA-Z0-9.]*\)\( - - \[\)\([A-Za-z0-9\/:]*\)\(.*GET \/\)\([A-Za-z0-9.]*\)\(.*" \)\([0-9]* [0-9]*\)\( .*\)/\1\t\3\t\5\t\7/g'
Not pretty but works :)
Output: crawl-66-249-64-13.hero.com 17/Oct/2004:04:40:15 rubbish.txt 200 25
Basically you have to break it up into the chunks you want, and then only output what you want. The "\1" in the sed command will display the first matched section. The \t is to add a tab between them. Change to what ever you would like. You want to match for items from 8 chunks.. which is why the output is \1\3\5\7
Related
Context;
After running the following command on my server:
zgrep "ResCode-5005" /loggers1/PCRF*/_01_03_2022 > analisis.txt
I get a text file with thousands of lines like this example:
loggers1/PCRF1_17868/PCRF12_01_03_2022_00_15_39.log:[C]|01-03-2022:00:18:20:183401|140404464875264|TRACKING: CCR processing Compleated for SubId-5281181XXXXX, REQNO-1, REQTYPE-3,
SId-mscp01.herpgwXX.epc.mncXXX.mccXXX.XXXXX.org;25b8510c;621dbaab;3341100102036XX-27cf0XXX,
RATTYPE-1004, ResCode-5005 |processCCR|ProcessingUnit.cpp|423
(X represents incrementing numbers)
Problem:
The output is filled with unnecessary data. The only string portions I need are the MSISDN,IMSI comma separated for each line, like this:
5281181XXXXX,3341100102036XX
Steps I tried
zgrep "ResCode-5005" /loggers1/PCRF*/_01_03_2022| grep -o -P
'(?<=SubId-).*?(?=, REQ)' > analisis1.txt
This gave me the first part of the solution
5281181XXXXX
However, when I tried to get the second string located between '334110' and "-"
zgrep "ResCode-5005" /loggers1/PCRF*/_01_03_2022| grep -o -P
'(?<=SubId-).?(?=, REQ)' | grep -o -P '(?<=334110).?(?=-)' >
analisis1.txt
it doesn't work.
Any input will be appreciated.
To get 5281181XXXXX or the second string located between '334110' and "-" you can use a pattern like:
\b(?:SubId-|334110)\K[^,\s-]+
The pattern matches:
\b A word boundary to prevent a partial word match
(?: Non capture group to match as a whole
SubId- Match literally
| Or
334110 Match literally
) Close the non capture group
\K Forget what is matched so far
[^,\s-]+ Match 1+ occurrences of any char except a whitespace char , or -
See the matches in this regex demo.
That will match:
5281181XXXXX
0102036XX
The command could look like
zgrep "ResCode-5005" /loggers1/PCRF*/_01_03_2022 | grep -oP '\b(?:SubId-|334110)\K[^,\s-]+' > analisis1.txt
So basically, the task is to count the number of students from who (command in putty) which have a student ID starting with 15 or 16 and ending with even number are currently logged into the machine, and write the output in the file sample.txt.
I've tried this command and it doesn't seem to work...
grep '^15\|16.*[02468]' | who | wc -l > sample.txt
Example:
155053
165054
175055
155056
Num of lines: 2
Any ideas?
You need
grep '^1[56].*[02468]$'
See the grep demo online.
Detais
^ - start of string
1 - 1
[56] - 5 or 6
.* - ant 0+ chars (replace with [0-9]* if you want to make sure pnly digit-only strings are matched)
[02468] - 0, 2, 4, 6, 8
$ - end of string.
I have Illumina paired-end reads contained within one .fastq file, denoted as '/1' for forward reads and '/2' for reverse reads.
I am using grep to pull out the individual reads and place them into 2 respective files (one for forward reads and one for reverse.
grep -A 3 "/1$" sample21_pe.unmapped.fq > sample21_1_rfa.fq
grep -A 3 "/2$" sample21_pe.unmapped.fq > sample21_2_rfa.fq
However, when I try to use the files (fastqc, assembly, etc), they do not work. When running
fastqc i get the following error:
Failed to process file sample21_1_rfa.fq
uk.ac.babraham.FastQC.Sequence.SequenceFormatException: ID line didn't start with '#'
at uk.ac.babraham.FastQC.Sequence.FastQFile.readNext(FastQFile.java:134)
at uk.ac.babraham.FastQC.Sequence.FastQFile.next(FastQFile.java:105)
at uk.ac.babraham.FastQC.Analysis.AnalysisRunner.run(AnalysisRunner.java:76)
at java.lang.Thread.run(Thread.java:662)
But, if you look at the files they identifier does indeed start with an '#'. Any advice on why these files aren't working? I had originally converted .bam files into the .fastq files with
samtools bam2fq
Here are samples of each individual file:
merged .fastq
#HISEQ:534:CB14TANXX:4:1101:1091:2161/1
GAGAAGCTCGTCCGGCTGGAGAATGTTGCGCTTGCGGTCCGGAGAGGACAGAAATTCGTTGATGTTAACGGTGCGCTCGCCGCGGACGCTCTTGATGGTGACGTCGGCGTTGAGCGTGACGCACG
+
B/</<//B<BFF<FFFFFF/BFFFFFFB<BFFF<B/7FFF7B/B/FF/F/<<F/FFBFFFBBFFFBFB/FF<BBB<B/B//BBFFFFFFF/B/FF/B77B//B7B7F/7F###############
#HISEQ:534:CB14TANXX:4:1101:1091:2161/2
TGACGCCTGCCGTCAGGTAGGTTCTCCGCAGATCCGAAATCTCGCGACGCTCGGCGGCAACATCTGCCAGTCGTCCGTGGCGGGCGACGGTCTCGCGGCGTGCGTCACGCTCAACGCCGACGTAC
+
/B<B//F/F//B<///<FB/</F<<FFFFF<FFBF/FF<//FB/F//F7FBFFFF/B</7<F//<BB7/7BB7/B<F7BF<BFFFB7B#####################################
#HISEQ:534:CB14TANXX:4:1101:1637:2053/1
NGTTTACCATACAACAATCTTGCGACCTATTCAAATCATCTATATGCCTTATCAAGTTTTCATAGCTTTCAAGATTCTCAATTTCCTCACGTCTCGCTTTGCTCAACCTACAAAAACTCTCTTCT
+
#<<BBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFFFFFFFFFFFB/BFBBFBB<<<<FFFFFFBB<FBFFBFF
#HISEQ:534:CB14TANXX:4:1101:1637:2053/2
TCGGTCGTTGGGAAAAGACCTGTGGTAAACATCCTACGCAAAAGCCATTGCGGTTACTCGTTCGTATGATTCTTGCATCAACTAATCAAGGCGATTGGGTTCTCGACCCATTTTGTGGAAGTTCG
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFBFFFFFB<FF<<BBFB
#HISEQ:534:CB14TANXX:4:1101:1792:2218/1
TCTATCGGCTGACCGATAAGCTGTCGCCTGCCGACCGTCCTGCCATGGGACGGCGCATCGCACAGCTCACCCTGGACTAACTCTCCAACACCATGATGCTGACACGCTCGGCAAAAACACCCGAT
+
<<B/<B</FF/<B/<//F<//FF<<<FF//</7/F<</FFF####################################################################################
#HISEQ:534:CB14TANXX:4:1101:1792:2218/2
TGCCGGAGGGCGTCGATGGTGGCATCGAGCTTTTTTGCCGAGCGTGTCAGCATGATGGTGTTGTAGAGATAGTCCATGGTGAGCTGTGCGATGCGCCGTTCCATGGCAGGACGGTCGGCAGGCGC
+
BBBBBFFFFFFFFBFFFBBFFFFFFFFFFFBBFFFF/FF<F7FF//F/FBB/FFBFFF/F7BFF<F/FFFFFFFFB/7BB<7BFFFFFFFFFFFFF<B///B/7B/7/B//77BB//7B/B7/B#
#HISEQ:534:CB14TANXX:4:1101:1903:2238/1
TATTCCAGCGACCGTTATAATCAAACTCAACTACATAGTCATTGCGGATTGCTTCAAGAAATTTTTTCCAGACTATTTCATCAATATTTATTTTGGGAACTGGTGCAACAGCAATTCTTTTTAAA
+
BBBBBFFFFFFFFFFFFFBFF/FFBFFBFFFFFFFF/FFFFFF<<FFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFBF/B/<B<B/FBF7/<FFFFFFF/BB/7///7FF<BFFF//B/FFF###
#HISEQ:534:CB14TANXX:4:1101:1903:2238/2
TAAGGTTGGAGAAGCAACAATTTACCGTGATATTGATTTGCTCCGAACATATTTTCATGCGCCACTCGAGTTTGACAGGGAGAAAGGCGGGTATTATTATTTTAATGAAAAATGGGATTTTGCCC
+
B<BBBFFFFFFF<FFFFFFFFFFFFFFFFFF/BFFFFFFF<<FF<F<FFF/FF/FFFFBFB</<//<B/////<<FFFFB/<F<BFF/7/</7/7FB/B/BFF<//7BFF###############
#HISEQ:534:CB14TANXX:4:1101:2107:2125/1
TGTAGTATTTATTACATCATATAGAATGTAGATATAAAAGATGAAAAAGCTATAATTTCTTTGATAATATAAGGAGGGAATAACACTATGAGGATTGATAGAGCAGGAATCGAGGATTTGCCGAT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFF/FFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBFFFFFFFBB<FBB7BFF#
#HISEQ:534:CB14TANXX:4:1101:2107:2125/2
TACCACTATCGGCAAATCCTCGATTCCTGCTCTATCAATCCTCATAGTGTTATTCCCTCCTTATATTATCAAAGAAATTATAGCTTTTTCATCTTTTATATCTACATTCTATATGATGTAATAAA
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFFBFBFFFFFFFBBFFFFFFFBF7F/B/BBF7/</FF/77F/77BB#
#HISEQ:534:CB14TANXX:4:1101:2023:2224/1
TCACCAGCTCGGCACGCTTGTCCTTGACCTCCTGCTCGATCTGACCGTCCATCTTGGCTGCCACGGTGTTCTCCTCGGCGGAGTAGGCAAAGCAGCCCAGACGGTCGAACTGTATCTCCTTGACA
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFB<<B7BBFBFFF<FFBBFFFBF/7B/<B<
#HISEQ:534:CB14TANXX:4:1101:2023:2224/2
TCGAGGATCTGTGCAACTTTGTCAAGGAGATACAGTTCGACCGTCTGGGCTGCTTTGCCTACTCCGCCGAGGAGAACACCGTGGCAGCCAAGATGGACGGTCAGATCGAGCAGGAGGTCAAGGAC
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFBFBFFFFFFFFFFFFFFFFFFFFFFFFFBBFFFFFFFFFFFFF<7BF/<<BB###
#HISEQ:534:CB14TANXX:4:1101:2038:2235/1
TTTATGCGAATGTAGAGTGGCTTCTCCACTGCCTCGGTGAAGCCCACGCGCGAGATGAGCGAATTAAGCTGCTTTGCAGTGAATTGCATTGCATATACACCTGCGTCGGCTTGAATACTTGTGCT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFF//BFFFFFFFFFFFFF<B<BB###
#HISEQ:534:CB14TANXX:4:1101:2038:2235/2
AATCCGCTCGTGAAAGCTCCCGATAACGCCACAGTGAACACCGTGGAGTTCTCTGATACCGAAGATTTCGCACGCAGCACAAGTATTCAAGCCGACGCAGGTGTATATGCAATGCAATTCACTGC
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBFFFFFFFFFFFFFFFFFFFFFFF
#HISEQ:534:CB14TANXX:4:1101:2271:2041/1
NACACTTGTCGATGATCTTGCCAAGCTGCTTCTTGCCCACCAGGAAGCCGATCTCCAGATCAAACTCGTGGCCGGGAACACTCCGGTCCACAAAGCCCAGGTCCTGGGGAATGGGCTCATCGTAG
+
#<</BB/F/BB/F<FFFFFFFFF/<BFFFFFFFF<<FFBFFFFFFBFBFBBB<<FFFFBFFF/<B/FFFFFFFFFFFFFFFFF<FB<<BFF77BFFF/<BFFFB<</BB</7BFFFB########
#HISEQ:534:CB14TANXX:4:1101:2271:2041/2
GACTCATCTACAATGAGCCCATTCCCCAGGACCTGGGCTTTGTGGACCGGAGTGTTCCCGGCCACGAGTTTGATCTGGAGATCGGCTTCCTGGTGGGCAAGAAGCAGCTTGGCAAGATCATCGCC
+
<<BBBFFF<F/BFFFBFBF<BFF<<F/FFFBFFFF<<FFFFBFFFFFFBFFF/<B<F/<</<FFF//FFFFF/<<F/B/B/7/FF<<FF/7B/BBB/7///7////<B/B/BB/B/B/B/7BB##
Example of forward reads after being pulled out and placed into their own .fastq file:
#HISEQ:534:CB14TANXX:4:1101:1091:2161/1
GAGAAGCTCGTCCGGCTGGAGAATGTTGCGCTTGCGGTCCGGAGAGGACAGAAATTCGTTGATGTTAACGGTGCGCTCGCCGCGGACGCTCTTGATGGTGACGTCGGCGTTGAGCGTGACGCACG
+
B/</<//B<BFF<FFFFFF/BFFFFFFB<BFFF<B/7FFF7B/B/FF/F/<<F/FFBFFFBBFFFBFB/FF<BBB<B/B//BBFFFFFFF/B/FF/B77B//B7B7F/7F###############
--
#HISEQ:534:CB14TANXX:4:1101:1637:2053/1
NGTTTACCATACAACAATCTTGCGACCTATTCAAATCATCTATATGCCTTATCAAGTTTTCATAGCTTTCAAGATTCTCAATTTCCTCACGTCTCGCTTTGCTCAACCTACAAAAACTCTCTTCT
+
#<<BBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFFFFFFFFFFFB/BFBBFBB<<<<FFFFFFBB<FBFFBFF
--
#HISEQ:534:CB14TANXX:4:1101:1792:2218/1
TCTATCGGCTGACCGATAAGCTGTCGCCTGCCGACCGTCCTGCCATGGGACGGCGCATCGCACAGCTCACCCTGGACTAACTCTCCAACACCATGATGCTGACACGCTCGGCAAAAACACCCGAT
+
<<B/<B</FF/<B/<//F<//FF<<<FF//</7/F<</FFF####################################################################################
--
#HISEQ:534:CB14TANXX:4:1101:1903:2238/1
TATTCCAGCGACCGTTATAATCAAACTCAACTACATAGTCATTGCGGATTGCTTCAAGAAATTTTTTCCAGACTATTTCATCAATATTTATTTTGGGAACTGGTGCAACAGCAATTCTTTTTAAA
+
BBBBBFFFFFFFFFFFFFBFF/FFBFFBFFFFFFFF/FFFFFF<<FFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFBF/B/<B<B/FBF7/<FFFFFFF/BB/7///7FF<BFFF//B/FFF###
--
#HISEQ:534:CB14TANXX:4:1101:2107:2125/1
TGTAGTATTTATTACATCATATAGAATGTAGATATAAAAGATGAAAAAGCTATAATTTCTTTGATAATATAAGGAGGGAATAACACTATGAGGATTGATAGAGCAGGAATCGAGGATTTGCCGAT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFF/FFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBFFFFFFFBB<FBB7BFF#
--
#HISEQ:534:CB14TANXX:4:1101:2023:2224/1
TCACCAGCTCGGCACGCTTGTCCTTGACCTCCTGCTCGATCTGACCGTCCATCTTGGCTGCCACGGTGTTCTCCTCGGCGGAGTAGGCAAAGCAGCCCAGACGGTCGAACTGTATCTCCTTGACA
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFB<<B7BBFBFFF<FFBBFFFBF/7B/<B<
--
#HISEQ:534:CB14TANXX:4:1101:2038:2235/1
TTTATGCGAATGTAGAGTGGCTTCTCCACTGCCTCGGTGAAGCCCACGCGCGAGATGAGCGAATTAAGCTGCTTTGCAGTGAATTGCATTGCATATACACCTGCGTCGGCTTGAATACTTGTGCT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFF//BFFFFFFFFFFFFF<B<BB###
--
#HISEQ:534:CB14TANXX:4:1101:2271:2041/1
NACACTTGTCGATGATCTTGCCAAGCTGCTTCTTGCCCACCAGGAAGCCGATCTCCAGATCAAACTCGTGGCCGGGAACACTCCGGTCCACAAAGCCCAGGTCCTGGGGAATGGGCTCATCGTAG
+
#<</BB/F/BB/F<FFFFFFFFF/<BFFFFFFFF<<FFBFFFFFFBFBFBBB<<FFFFBFFF/<B/FFFFFFFFFFFFFFFFF<FB<<BFF77BFFF/<BFFFB<</BB</7BFFFB########
--
#HISEQ:534:CB14TANXX:4:1101:2678:2145/1
CTGTACATAGTACGTATTTGACGCCTGCGTCGATGTAGCGTTTGAGGAAGGGAAGCAGCGGTTCTGCAGAGTCCTCTTTCCATCCGTTGATGCTAATCATTCCGTTGCGTACATCCGCTCCGAGA
+
BBBBBFFFFFFF<FFF<FFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<BFFF7BFFFFFFFF<BBFFFFFFFFBBFBBB<FFBFFFFFFFFFFFFB<BFFFFFFBFB/BFFF####
--
#HISEQ:534:CB14TANXX:4:1101:2972:2114/1
CTCTGTGCCGATCCCTTTGCCTTTGCGTTTTGAGGAAAGGAAACCACCTTCTGGGTCGGTGAGGATAGTTCCGGTGAAGGTGTTGTCCACCGCCAGGCATAGGGAATAGCTGTCAGCCTTTGCTC
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB/FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFBFFFF<FFFFFFFFFF<BFFFFF
--
#HISEQ:534:CB14TANXX:4:1101:2940:2222/1
CTAATTTTTTCATTATATTACTAATTTTGTAATTGGTAAAATATTATAATATCCTTGTACATTAAGACCCCAATAATCAGAAGAAGTAAAATTAATTCCTGCAACAGTTCTTAAATATCCATTAG
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FBFFFFFFFFFFFFFFF/FBFBFFBFFFFF/<F<FFFFFFFFFF<FFFFFFBFFFFFFFFF</FBFBBF<F/7//FFBFBBFFF/<7BF#
--
#HISEQ:534:CB14TANXX:4:1101:3037:2180/1
CGTCAGTTCCGCAACGATAAAGAGTTCCGCATTGCAGTCACCTGTACGCTGGTAGCCACCGGAACCGATGTCAAGCCGTTGGAGGTGGTGATGTTCATGCGCGACGTAGCTTCCGAGCCGTTATA
+
B/BBBBBFFFFFFF<FFBFFFFFF<FFFFBFFFFFFF<BBFFFFFFFFFFFFFFFFFBFF/FFFFBFFBFFFFBFF/7F/BFB/BBFFFFFFFFBFF<BBF<7BBFFFFFFBBFFF/B#######
--
#HISEQ:534:CB14TANXX:4:1101:3334:2171/1
ACCGATGTACATACCCGGACGGGTACGCACATGCTCCATATCGCTCAAGTGGCGGATATTGTCATCTGTATATTCTACAGGTTGCTCCTGAGGGGTATTTGCCAGTTCTTCGGCAGCACCCTTTT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFBFFFFFFFFFFFBFFFFFFFFFF</<BFFFFFFFFBBFFFFFFBF</BB///BF<FFFFF<</<B
--
#HISEQ:534:CB14TANXX:4:1101:3452:2185/1
CGCAGACGGATTTGCTTGAAGTCCGTCTCATCGTATTCCGACAACTCATCGAGGAACACACGCTTGTATTGACTGATACCCTTGATTTTCTCCGGGTCGTCAAGACCACTGAAATCAATCTTGCC
+
BBBBBFFFF<FFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFBFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFBFFFFFBFFBFFFFFFFFFB/77B/FBBFFF/<FFF/77BBFFFBFFBBB
--
Any advice would be appreciated. Thanks!
In general, this operation is called deinterlace fastq or deinterleave fastq. The question already has the answer here:
deinterleave fastq file
https://www.biostars.org/p/141256/
I am copying it here, with minor reformatting for clarity:
paste - - - - - - - - < interleaved.fq \
| tee >(cut -f 1-4 | tr "\t" "\n" > read1.fq) \
| cut -f 5-8 | tr "\t" "\n" > read2.fq
This command converts the interlaced fastq file into 8-column tsv file, cuts columns 1-4 (read 1 lines), changes from tsv to fastq format (by replacing tabs with newlines) and redirects the output to read1.fq. In the same STDOUT stream (for speed), using tee, it cuts columns 5-8 (read 2 lines), etc, and redirects the output to read2.fq.
You can also use these command line tools:
iamdelf/deinterlace: Deinterlaces paired-end FASTQ files into first and second strand files.
https://github.com/iamdelf/deinterlace
deinterleave FASTQ files
https://gist.github.com/nathanhaigh/3521724
Or online tools with Galaxy web UI, for example this tool: "FASTQ splitter on joined paired end reads", installed on several public Galaxy instances, such as https://usegalaxy.org/ .
Avoid using a regex for simple fastq file parsing if you can use line numbers, both for speed (pattern matching is slower than simple counting) and for robustness.
Highly unlikely, but a pattern like ^#.*/1$ (or whatever the readers might change it to, while reusing this code later) can match also the base quality line. A good general rule is to simply rely on fastq spec, which says 4 lines per record.
Note that #, /, 1, and 2 characters are allowed in Illumina Phred scores: https://support.illumina.com/help/BaseSpace_OLH_009008/Content/Source/Informatics/BS/QualityScoreEncoding_swBS.htm .
A one-liner that pulls out such (admittedly, very rare) reads is left as an exercise to the reader.
The fastq format uses 4 lines per read.
Your snippet has 5, as there are -- lines. That could cause confusion to softwares expecting a 4 line format.
You can add --no-group-separator to the grep call to avoid adding that separator.
I usually follow these steps to convert bam to fastq.gz
samtools bam2fq myBamfile.bam > myBamfile.fastq
cat myBamfile.fastq | grep '^#.*/1$' -A 3 --no-group-separator > sample_1.fastq
cat myBamfile.fastq | grep '^#.*/2$' -A 3 --no-group-separator > sample_2.fastq
gzip sample_1.fastq
gzip sample_1.fastq
Once you have the two files, you should order them to be sure that the reads are really paired.
We can split FASTQ files using Seqkit.
seqkit split2 -p 2 sample21_pe.unmapped.fq
https://bioinf.shenwei.me/seqkit/usage/#split2
Example 4 will help this question.
I'm not sure if it recognize the read ID. It split and write alternately into 1st-output-file and 2nd-output-file.
I tried to use grep to search for lines containing the word "bead" using "\b" but it doesn't find the lines containing the word "bead" separated by space. I tried this script:
cat in.txt | grep -i "\bbead\b" > out.txt
I get results like
BEAD-air.JPG
Bead, 3 sided MET DP110317.jpg
Bead. -2819 (FindID 10143).jpg
Bead(Gem), Artefacts of Phu Hoa site(Dong Nai province).jpg
Romano-British pendant amulet (bead) (FindID 241983).jpg
But I don't get the results like
Bead fun.jpg
Instead of getting some 2,000 lines, I'm only getting 92 lines
My OS is Windows 10 - 64 bit but I'm using grep 2.5.4 from the GnuWin32 package.
I've also tried the MSYS2, which includes grep 3.0 but it does the same thing.
And then, how can I search for words separated by space?
LATER EDIT:
It looks like grep has problems with big files. My input file is 2.4 GB in size. With smaller files, it works - I reported the bug here: https://sourceforge.net/p/getgnuwin32/discussion/554300/thread/03a84e6b/
Try this,
cat in.txt | grep -wi "bead"
-w provides you a whole word search
What you are doing normally should work but there are ways of setting what is and is not considered a word boundary. Rather than worry about it please try this instead:
cat in.txt | grep -iP "\bbead(\b|\s)" > out.txt
The P option adds in Perl regular expression power and the \s matches any sort of space character. The Or Bar | separates options within the parens ( )
While you are waiting for grep to be fixed you could use another tool if it is available to you. E.g.
perl -lane 'print if (m/\bbead\b/i);' in.txt > out.txt
I need to find some matching conditions from a file and recursively find the next conditions in previously matched files , i have something like this
input.txt
123
22
33
The files where you need to find above terms in following files, the challenge is if 123 is found in say 10 files , the 22 should be searched in these 10 files only and so on...
Example of files are like f1,f2,f3,f4.....f1200
so it is like i need to grep -w "123" f* | grep -w "123" | .....
its not possible to list them manually so any easier way?
You can solve this using awk script, i ve encountered a similar problem and this will work fine
awk '{ if(!NR){printf("grep -w %d f*|",$1)} else {printf("grep -w %d f*",$1)} }' input.txt | sh
What it Does?
it reads input.txt line by line
until it is at last record , it prints grep -w %d | (note there is a
pipe here)
which is then sent to shell for execution and results are piped back
to back
and when you reach the end the pipe is avoided
Perhaps taking a meta-programming viewpoint would help. Have grep output a series of grep commands. Or write a little PERL program. Maybe Ruby, if the mood suits.
You can use grep -lw to write the list of file names that matched (note that it will stop after finding the first match).
You capture the list of file names and use that for the next iteration in a loop.