Difference-in-difference analysis in SPSS - spss

I am trying to compare means of the two groups 'single mothers with one child' and 'single mothers with more than one child' before and after the reform of the EITC system in 1993.
Through the procedure T-test in SPSS, I can get the difference between groups before and after the reform. But how do I get the difference of the difference (I still want standard errors)?
I found these methods for STATA and R (http://thetarzan.wordpress.com/2011/06/20/differences-in-differences-estimation-in-r-and-stata/), but I can't seem to figure it out in SPSS.
Hope someone will be able to help.
All the best,
Anne

This can be done with the GENLIN procedure. Here's some random data I generated to show how:
data list list /after oneChild value.
begin data.
0 1 12
0 1 12
0 1 11
0 1 13
0 1 11
1 1 10
1 1 9
1 1 8
1 1 9
1 1 7
0 0 16
0 0 16
0 0 18
0 0 15
0 0 17
1 0 6
1 0 6
1 0 5
1 0 5
1 0 4
end data.
dataset name exampleData WINDOW=front.
EXECUTE.
value labels after 0 'before' 1 'after'.
value labels oneChild 0 '>1 child' 1 '1 child'.
The mean for the groups (in order, before I truncated to integers) are 17, 6, 12, and 9 respectively. So our GENLIN procedure should generate values of -11 (the after-before difference in the >1 child group), -5 (the difference of 1 child - >1 child), and 8 (the child difference of the after-before differences).
To graph the data, just so you can see what we're expecting:
* Chart Builder.
GGRAPH
/GRAPHDATASET NAME="graphdataset" VARIABLES=after value oneChild MISSING=LISTWISE REPORTMISSING=NO
/GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
SOURCE: s=userSource(id("graphdataset"))
DATA: after=col(source(s), name("after"), unit.category())
DATA: value=col(source(s), name("value"))
DATA: oneChild=col(source(s), name("oneChild"), unit.category())
GUIDE: axis(dim(2), label("value"))
GUIDE: legend(aesthetic(aesthetic.color.interior), label(""))
SCALE: linear(dim(2), include(0))
ELEMENT: line(position(smooth.linear(after*value)), color.interior(oneChild))
ELEMENT: point.dodge.symmetric(position(after*value), color.interior(oneChild))
END GPL.
Now, for the GENLIN:
* Generalized Linear Models.
GENLIN value BY after oneChild (ORDER=DESCENDING)
/MODEL after oneChild after*oneChild INTERCEPT=YES
DISTRIBUTION=NORMAL LINK=IDENTITY
/CRITERIA SCALE=MLE COVB=MODEL PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYSISTYPE=3(WALD)
CILEVEL=95 CITYPE=WALD LIKELIHOOD=FULL
/MISSING CLASSMISSING=EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.
The results table shows just what we expect.
The >1 child group is 12.3 - 10.1 lower after vs. before. This 95% CI contains the "real" value of 11
The before difference between >1 children and 1 child is 5.7 - 3.5, containing the real value of 5
The difference-of-differences is 9.6 - 6.4, containing the real value of (17-6) - (12-9) = 8
Std. errors, p values, and the other hypothesis testing values are all reported as well. Hope that helps.
EDIT: this can be done with less "complicated" syntax by computing the interaction term yourself and doing simple linear regression:
compute interaction = after*onechild.
execute.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT value
/METHOD=ENTER after oneChild interaction.
Note that the resulting standard errors and confidence intervals are actually different from the previous method. I don't know enough about SPSS's GENLIN and REGRESSION procedures to tell you why that's the case. In this contrived example, the conclusion you'd draw from your data would be approximately the same. In real life, the data aren't likely to be this clean, so I don't know which method is "better".

General Linear model, i take it as a 'ANOVA' model.
So use the related module in SPSS's Analyze menu.
After T-test, you need to check the sigma equality of each group .

Regarding the first answer above:
* Note that GENLIN uses maximum likelihood estimation (MLE) whereas REGRESSION
* uses ordinary least squares (OLS). Therefore, GENLIN reports z- and Chi-square tests
* where REGRESSION reports t- and F-tests. Rather than using GENLIN, use UNIANOVA
* to get the same results as REGRESSION, but without the need to compute your own
* product term.
UNIANOVA value BY after oneChild
/PLOT=PROFILE(after*oneChild)
/PLOT=PROFILE(oneChild*after)
/PRINT PARAMETER
/EMMEANS=TABLES(after*oneChild) COMPARE(after)
/EMMEANS=TABLES(after*oneChild) COMPARE(oneChild)
/DESIGN=after oneChild after*oneChild.
HTH.

Related

Encode a categorical feature with multiple categories per example

I am working on a dataset which has a feature that has multiple categories for a single example.
The feature looks like this:-
Feature
0 [Category1, Category2, Category2, Category4, Category5]
1 [Category11, Category20, Category133]
2 [Category2, Category9]
3 [Category1000, Category1200, Category2000]
4 [Category12]
The problem is similar to the this question posted:- Encode categorical features with multiple categories per example - sklearn
Now, I want to vectorize this feature. One solution is to use MultiLabelBinarizer as suggested in the answer of the above similar question. But, there are around 2000 categories, which results into a sparse and very high dimentional encoded data.
Is there any other encoding that can be used? Or any possible solution for this problem. Thanks.
Given an incredibly sparse array one could use a dimensionality reduction technique such as PCA (Principal component analysis) to reduce the feature space to the top k features that best describe the variance.
Assuming the MultiLabelBinarizered 2000 features = X
from sklearn.decomposition import PCA
k = 5
model = PCA(n_components = k, random_state = 666)
model.fit(X)
Components = model.predict(X)
And then you can use the top K components as a smaller dimensional feature space that can explain a large portion of the variance for the original feature space.
If you want to understand how well the new smaller feature space describes the variance you could use the following command
model.explained_variance_
In many cases when I encountered the problem of too many features being generated from a column with many categories, I opted for binary encoding and it worked out fine most of the times and hence is worth a shot for you perhaps.
Imagine you have 9 features, and you mark them from 1 to 9 and now binary encode them, you will get:
cat 1 - 0 0 0 1
cat 2 - 0 0 1 0
cat 3 - 0 0 1 1
cat 4 - 0 1 0 0
cat 5 - 0 1 0 1
cat 6 - 0 1 1 0
cat 7 - 0 1 1 1
cat 8 - 1 0 0 0
cat 9 - 1 0 0 1
This is the basic intuition behind Binary Encoder.
PS: Given that 2 power 11 is 2048 and you may have 2000 categories or so, you can reduce your categories to 11 feature columns instead of many (for example, 1999 in the case of one-hot)!
I also encountered these same problems but I solved using Countvectorizer from sklearn.feature_extraction.text just by giving binary=True, i.e CounterVectorizer(binary=True)

Data Science: Scoring methodology

I am looking for any methodology to assign a risk score to an individual based on certain events. I am looking to have a 0-100 scale with an exponential assignment. For example, for one event a day the score may rise to 25, for 2 it may rise to 50-60 and for 3-4 events a day the score for the day would be 100.
I tried to Google it but since I am not aware of the right terminology, I am landing up on random topics. :(
Is there any mathematical terminology for this kind of scoring system? what are the most common methods you might know?
P.S.: Expert/experience data scientist advice highly appreciated ;)
I would start by writing some qualifications:
0 events trigger a score of 0.
Non edge event count observations are where the score – 100-threshold would live.
Any score after the threshold will be 100.
If so, here's a (very) simplified example:
Stage Data:
userid <- c("a1","a2","a3","a4","a11","a12","a13","a14","u2","wtf42","ub40","foo","bar","baz","blue","bop","bob","boop","beep","mee","r")
events <- c(0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,2,3,6,122,13,1)
df1 <- data.frame(userid,events)
Optional: Normalize events to be in (1,2].
This might be helpful for logarithmic properties. (Otherwise, given the assumed function, score=events^exp, as in this example, 1 event will always yield a score of 1) This will allow you to control sensitivity, but it must be done right as we are dealing with exponents and logarithms. I am not using normalization in the example:
normevents <- (events-mean(events))/((max(events)-min(events))*2)+1.5
Set the quantile threshold for max score:
MaxScoreThreshold <- 0.25
Get the non edge quintiles of the events distribution:
qts <- quantile(events[events>min(events) & events<max(events)], c(seq(from=0, to=100,by=5)/100))
Find the Events quantity that give a score of 100 using the set threshold.
MaxScoreEvents <- quantile(qts,MaxScoreThreshold)
Find the exponent of your exponential function
Given that:
Score = events ^ exponent
events is a Natural number - integer >0: We took care of it by
omitting the edges)
exponent > 1
Exponent Calculation:
exponent <- log(100)/log(MaxScoreEvents)
Generate the scores:
df1$Score <- apply(as.matrix(events^exponent),1,FUN = function(x) {
if (x > 100) {
result <- 100
}
else if (x < 0) {
result <- 0
}
else {
result <- x
}
return(ceiling(result))
})
df1
Resulting Data Frame:
userid events Score
1 a1 0 0
2 a2 0 0
3 a3 0 0
4 a4 0 0
5 a11 0 0
6 a12 0 0
7 a13 0 0
8 a14 0 0
9 u2 0 0
10 wtf42 0 0
11 ub40 0 0
12 foo 0 0
13 bar 1 1
14 baz 2 100
15 blue 3 100
16 bop 2 100
17 bob 3 100
18 boop 6 100
19 beep 122 100
20 mee 13 100
21 r 1 1
Under the assumption that your data is larger and has more event categories, the score won't snap to 100 so quickly, it is also a function of the threshold.
I would rely more on the data to define the parameters, threshold in this case.
If you have prior data as to what users really did whatever it is your score assess you can perform supervised learning, set the threshold # wherever the ratio is over 50% for example. Or If the graph of events to probability of ‘success’ looks like the cumulative probability function of a normal distribution, I’d set threshold # wherever it hits 45 degrees (For the first time).
You could also use logistic regression if you have prior data but instead of a Logit function ingesting the output of regression, use the number as your score. You can normalize it to be within 0-100.
It’s not always easy to write a Data Science question. I made many assumptions as to what you are looking for, hope this is the general direction.

Padding time-series subsequences for LSTM-RNN training

I have a dataset of time series that I use as input to an LSTM-RNN for action anticipation. The time series comprises a time of 5 seconds at 30 fps (i.e. 150 data points), and the data represents the position/movement of facial features.
I sample additional sub-sequences of smaller length from my dataset in order to add redundancy in the dataset and reduce overfitting. In this case I know the starting and ending frame of the sub-sequences.
In order to train the model in batches, all time series need to have the same length, and according to many papers in the literature padding should not affect the performance of the network.
Example:
Original sequence:
1 2 3 4 5 6 7 8 9 10
Subsequences:
4 5 6 7
8 9 10
2 3 4 5 6
considering that my network is trying to anticipate an action (meaning that as soon as P(action) > threshold as it goes from t = 0 to T = tmax, it will predict that action) will it matter where the padding goes?
Option 1: Zeros go to substitute original values
0 0 0 4 5 6 7 0 0 0
0 0 0 0 0 0 0 8 9 10
0 2 3 4 5 6 0 0 0 0
Option 2: all zeros at the end
4 5 6 7 0 0 0 0 0 0
8 9 10 0 0 0 0 0 0 0
2 3 4 5 0 0 0 0 0 0
Moreover, some of the time series are missing a number of frames, but it is not known which ones they are - meaning that if we only have 60 frames, we don't know whether they are taken from 0 to 2 seconds, from 1 to 3s, etc. These need to be padded before the subsequences are even taken. What is the best practice for padding in this case?
Thank you in advance.
The most powerful attribute of LSTMs and RNNs in general is that their parameters are shared along the time frames(Parameters recur over time frames) but the parameter sharing relies upon the assumption that the same parameters can be used for different time steps i.e. the relationship between the previous time step and the next time step does not depend on t as explained here in page 388, 2nd paragraph.
In short, padding zeros at the end, theoretically should not change the accuracy of the model. I used the adverb theoretically because at each time step LSTM's decision depends on its cell state among other factors and this cell state is kind of a short summary of the past frames. As far as I understood, that past frames may be missing in your case. I think what you have here is a little trade-off.
I would rather pad zeros at the end because it doesn't completely conflict with the underlying assumption of RNNs and it's more convenient to implement and keep track of.
On the implementation side, I know tensorflow calculates the loss function once you give it the sequences and the actual sequence size of each sample(e.g. for 4 5 6 7 0 0 0 0 0 0 you also need to give it the actual size which is 4 here) assuming you're implementing the option 2. I don't know whether there is an implementation for option 1, though.
Better go for padding zeroes in the beginning, as this paper suggests Effects of padding on LSTMs and CNNs,
Though post padding model peaked it’s efficiency at 6 epochs and started to overfit after that, it’s accuracy is way less than pre-padding.
Check table 1, where the accuracy of pre-padding(padding zeroes in the beginning) is around 80%, but for post-padding(padding zeroes in the end), it is only around 50%
In case you have sequences of variable length, pytorch provides a utility function torch.nn.utils.rnn.pack_padded_sequence. The general workflow with this function is
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
embedding = nn.Embedding(4, 5)
rnn = nn.GRU(5, 5)
sequences = torch.tensor([[1,2,0], [3,0,0], [2,1,3]])
lens = [2, 1, 3] # indicating the actual length of each sequence
embeddings = embedding(sequences)
packed_seq = pack_padded_sequence(embeddings, lens, batch_first=True, enforce_sorted=False)
e, hn = rnn(packed_seq)
One can collect the embedding of each token by
e = pad_packed_sequence(e, batch_first=True)
Using this function is better than padding by yourself, because torch will limit RNN to only inspecting the actual sequence and stop before the padded token.

Handling features not correlated with output prediction?

I do regression analysis with multiple features. Number of features is 20-23. For now, I check each feature correlation with output variable. Some features show correlation coefficient close to 1 or -1 (highly correlated). Some features show correlation coefficient near 0. My question is: do I have to remove this feature if it has close to 0 correlation coefficient? Or I can keep it and the only problem is that this feature will no make some noticeable effect to regression model or will have faint affect on it. Or removing that kind of features is obligatory?
In short
High (absolute) correlation between a feature and output implies that this feature should be valuable as predictor
Lack of correlation between feature and output implies nothing
More details
Pair-wise correlation only shows you how one thing affects the other, it says completely nothing about how good is this feature connected with others. So if your model is not trivial then you should not drop variables because they are not correlated with output). I will give you the example which should show you why.
Consider following sample, we have 2 features (X, Y), and one output value (Z, say red is 1, black is 0)
X Y Z
1 1 1
1 2 0
1 3 0
2 1 0
2 2 1
2 3 0
3 1 0
3 2 0
3 3 1
Let us compute the correlations:
CORREL(X, Z) = 0
CORREL(Y, Z) = 0
So... we should drop all values? One of them? If we drop any variable - our prolem becomes completely impossible to model! "magic" lies in the fact that there is actually a "hidden" relation in the data.
|X-Y|
0
1
2
1
0
1
2
1
0
And
CORREL(|X-Y|, Z) = -0.8528028654
Now this is a good predictor!
You can actually get a perfect regressor (interpolator) through
Z = 1 - sign(|X-Y|)

Using LIBLINEAR in transition-based dependency parsing

I am going to do some work for transition-based dependency parsing using LIBLINEAR. But I am confused how to utilize it. As follows:
I set 3 feature templates for my training&testing processes of transition-based dependency parsing:
1. the word in the top of the stack
2. the word in the front of the queue
3. information from the current tree formed with the steps
And the feature defined in LIBLINEAR is:
FeatureNode(int index, double value)
Some examples like:
LABEL ATTR1 ATTR2 ATTR3 ATTR4 ATTR5
----- ----- ----- ----- ----- -----
1 0 0.1 0.2 0 0
2 0 0.1 0.3 -1.2 0
1 0.4 0 0 0 0
2 0 0.1 0 1.4 0.5
3 -0.1 -0.2 0.1 1.1 0.1
But I want to define my features like(one sentence 'I love you') at some stage:
feature template 1: the word is 'love'
feature template 2: the word is 'you'
feature template 3: the information is - the left son of 'love' is 'I'
Does it mean I must define features with LIBLINEAR like: -------FORMAT 1
(indexes in vocabulary: 0-I, 1-love, 2-you)
LABEL ATTR1(template1) ATTR2(template2) ATTR3(template3)
----- ----- ----- -----
SHIFT 1 2 0
(or LEFT-arc,
RIGHT-arc)
But I have go thought some statements of others, I seem to define feature in binary so I have to define a words vector like:
('I', 'love', 'you'), when 'you' appears for example, the vector will be (0, 0, 1)
So the features in LIBLINEAR may be: -------FORMAT 2
LABEL ATTR1('I') ATTR2('love') ATTR3('love')
----- ----- ----- -----
SHIFT 0 1 0 ->denoting the feature template 1
(or LEFT-arc,
RIGHT-arc)
SHIFT 0 0 1 ->denoting the feature template 2
(or LEFT-arc,
RIGHT-arc)
SHIFT 1 0 0 ->denoting the feature template 3
(or LEFT-arc,
RIGHT-arc)
Which is correct between FORMAT 1 and 2?
Is there some something I have mistaken?
Basically you have a feature vector of the form:
LABEL RESULT_OF_FEATURE_TEMPLATE_1 RESULT_OF_FEATURE_TEMPLATE_2 RESULT_OF_FEATURE_TEMPLATE_3
Liblinear or LibSVM expect you to translate it into integer representation:
1 1:1 2:1 3:1
Nowadays, depending on the language you use there are lots of packages/libraries, which would translate the string vector into libsvm format automatically, without you having to know the details.
However, if for whatever reason you want to do it yourself, the easiest thing would be maintain two mappings: one mapping for labels ('shift' -> 1, 'left-arc' -> 2, 'right-arc' -> 3, 'reduce' -> 4). And one for your feature template result ('f1=I' -> 1, 'f2=love' -> 2, 'f3=you' -> 3). Basically every time your algorithms applies a feature template you check whether the result is already in the mapping and if not you add it with a new index.
Remember that Liblinear or Libsvm expect a sorted list in ascending order.
During processing you would first apply your feature templates to the current state of your stacks and then translate the strings to the libsvm/liblinear integer representation and sort the indexes in ascending order.

Resources