loaddup_pd/unpacklo_pd on Xeon Phi - vectorization

If I have the following doubles in a 512-wide SIMD vector, as in a Xeon Phi register:
m0 = |b4|a4|b3|a3|b2|a2|b1|a1|
is it possible to make it into:
m0_d = |a4|a4|a3|a3|a2|a2|a1|a1|
using a single instruction?
Also since there are no bitwise intrinsics for doubles is this still a valid way to achieve the above?
m0_t = _mm512_swizzle_pd(m9,_MM_SWIZ_REG_CDAB);//m0_t->|a4|b4|a3|b3|a2|b2|a1|b1|
__m512d res = _mm512_mask_or_epi64(m0,k1,zero,m0_t);//k1 is 0xAA

Can be achieved as follows:
m0_d = _mm512_mask_swizzle_pd(m0,0xAA,m0,_MM_SWIZ_REG_CDAB);
It might seem that the swizzle operation is limited, but with the masked variant we can achieve other permutations too.

Related

Efficient pseudo-inverse for PyTorch 2D convolution

Background:
Thanks for your attention! I am learning the basic knowledge of 2D convolution, linear algebra and PyTorch. I encounter the implementation problem about the psedo-inverse of the convolution operator. Specifically, I have no idea about how to implement it in an efficient way. Please see the following problem statements for details. Any help/tip/suggestion is welcomed.
(Thanks a lot for your attention!)
The Original Problem:
I have an image feature x with shape [b,c,h,w] and a 3x3 convolutional kernel K with shape [c,c,3,3]. There is y = K * x. How to implement the corresponding pseudo-inverse on y in an efficient way?
There is [y = K * x = Ax], how to implement [x_hat = (A^+)y]?
I guess that there should be some operations using torch.fft. However, I still have no idea about how to implement it. I do not know if there exists an implementation previously.
import torch
import torch.nn.functional as F
c = 32
K = torch.randn(c, c, 3, 3)
x = torch.randn(1, c, 128, 128)
y = F.conv2d(x, K, padding=1)
print(y.shape)
# How to implement pseudo-inverse for y = K * x in an efficient way?
Some of My Efforts:
I may know that the 2D convolution is a linear operator. It is equivalent to a "matrix product" operator. We can actually write out the matrix form of the convolution and calculate its psedo-inverse. However, I think this type of operation will be inefficient. And I have no idea about how to implement it in an efficient way.
According to Wikipedia, the psedo-inverse may satisfy the property of A(A_pinv(x))=x, where A is the convolutional operator, A_pinv is its psedo-inverse, and x may be any image feature.
(Thanks again for reading such a long post!)
This takes the problem to another level.
The convolution itself is a linear operation, you can determine the matrix of the operation and solve a least square problem directly [1], or compute the pseudo-inverse as you mentioned, and then apply to different outputs and predicting a projection of the input.
I am changing your code to using padding=0
import torch
import torch.nn.functional as F
# your code
c = 32
K = torch.randn(c, c, 1, 1)
x = torch.randn(4, c, 128, 128)
y = F.conv2d(x, K, bias=torch.zeros((c,)))
Also, as you probably already suggested the convolution can be computed as ifft(fft(h)*fft(x)). However, the conv2d function is a cross-correlation, so you have to conjugate the filter leading to ifft(fft(h)*fft(x)), also you have to apply this to two axes, and you have to make sure the FFT is calcuated using the same representation (size), since the data is real, we can apply multi-dimensional real FFT. To be complete, conv2d works on multiple channels, so we have to calculate summations of convolutions. Since the FFT is linear, we can simply compute the summations on the frequency domain
using einsum.
s = y.shape[-2:]
K_f = torch.fft.rfftn(K, s)
x_f = torch.fft.rfftn(x, s)
y_f = torch.einsum('jkxy,ikxy->ijxy', K_f.conj(), x_f)
y_hat = torch.fft.irfftn(y_f, s)
Except for the borders it should be accurate (remember FFT computes a cyclic convolution).
torch.max(abs(y_hat[:,:,:-2,:-2] - y[:,:,:,:]))
Now, notice the pattern jk,ik->ij on the einsum, that means y_f[i,j] = sum(K_f[j,k] * x_f[i,k]) = x_f # K_f.T, if # is the matrix product on the first two dimensions. So to invert this operation we have to can interpret the first two dimensions as matrices. The function pinv will compute pseudo-inverses on the last two axes, so in order to use that we have to permute the axes. If we right multiply the output by the pseudo-inverse of transposed K_f we should invert this operation.
s = 128,128
K_f = torch.fft.rfftn(K, s)
K_f_inv = torch.linalg.pinv(K_f.T).T
y_f = torch.fft.rfftn(y_hat, s)
x_f = torch.einsum('jkxy,ikxy->ijxy', K_f_inv.conj(), y_f)
x_hat = torch.fft.irfftn(x_f, s)
print(torch.mean((x - x_hat)**2) / torch.mean((x)**2))
Nottice that I am using the full convolution, but the conv2d actually cropped the images. Let's apply that
y_hat[:,:,128-(k-1):,:] = 0
y_hat[:,:,:,128-(k-1):] = 0
Repeating the calculation you will see that the input is not accurate anymore, so you have to be careful about what you do with your convolution, but in some situations where you can get this to work it will be in fact efficient.
s = 128,128
K_f = torch.fft.rfftn(K, s)
K_f_inv = torch.linalg.pinv(K_f.T).T
y_f = torch.fft.rfftn(y_hat, s)
x_f = torch.einsum('jkxy,ikxy->ijxy', K_f_inv.conj(), y_f)
x_hat = torch.fft.irfftn(x_f, s)
print(torch.mean((x - x_hat)**2) / torch.mean((x)**2))

Minimize a equation using opencv

I need to solve the following equation:
I Know the matrix G, how can I find the the matrix p subject to ||p|| = 1.
Currently I am solving in opencv as follows:
Mat w, u, EigenVectors;
SVD::compute(A, w, u, EigenVectors);
Mat p = EigenVectors.row(EigenVectors.rows-1);
I want to know how can I ensure the condition ||p|| = 1.
Also I want to know the significance and meaning of other rows/cols of the EigenVectors(transposed) ?
I believe you can use cv::SVD::solveZ(). It finds a unit-length solution x of a singular linear system A * x = 0
Looks like you need to use Lagrange multipliers method.
As I know, OpenCV have no ready to use tools for that.
Good example for MATLAB: Lagrange Multipliers

valid kernel functions for SVM

I am implementing SVM with the following kernel functions:
assume a and b are scalars:
k(a,b) = (a-b)^4
k(a,b) = alpha * ab, alpha >=0
k(a,b) = (ab+1)^4
are these valid kernels?
Thanks for help! :)
2 and 3 are just a specific polyonmial kernels K(a,b)=(alpha*<a,b>+c)^p while the first one is not a valid scalar product as K(a,a)=0 which would imply that for each x, phi(x)=0, so this would imply that for all a,b,c,d, K(a,b)=K(c,d) (in other words, the kernel is constant, which is not true, contradiction).

Blocproc in matlab with two output variables

I have the following problem. I have to compute dense SIFT interest points in a very high dimensional image (182MP). When I run the code in the full image Matlab always close suddently. So I decided to run the code in image patches.
the code
I tried to use blocproc in matlab to call the c++ function that performs the dense sift interest points detection this way:
fun = #(block_struct) denseSIFT(block_struct.data, options);
[dsift , infodsift] = blockproc(ndvi,[1000 1000],fun);
where dsift is the sift descriptors (vectors) and infodsift has the information of the interest points, such as the x and y coordinates.
the problem
The problem is the fact that blocproc just allow one output, but i want both outputs. The following error is given by matlab when i run the code.
Error using blockproc
Too many output arguments.
Is there a way for me doing this?
Would it be a problem for you to "hard code" a version of blockproc?
Assuming for a moment that you can divide your image into NxM smaller images, you could loop around as follows:
bigImage = someFunction();
sz = size(bigImage);
smallSize = sz ./ [N M];
dsift = cell(N,M);
infodsift = cell(N,M);
for ii = 1:N
for jj = 1:M
smallImage = bigImage((ii-1)*smallSize(1) + (1:smallSize(1)), (jj-1)*smallSize(2) + (1:smallSize(2));
[dsift{ii,jj} infodsift{ii,jj}] = denseSIFT(smallImage, options);
end
end
The results will then be in the two cell arrays. No real need to pre-allocate, but it's tidier if you do. If the individual matrices are the same size, you can convert into a single large matrix with
dsiftFull = cell2mat(dsift);
Almost magic. This won't work if your matrices are different sizes - but then, if they are, I'm not sure you would even want to put them all in a single one (unless you decide to horzcat them).
If you do decide you want a list of "all the colums as a giant matrix", then you can do
giantMatrix = [dsift{:}];
This will return a matrix with (in your example) 128 rows, and as many columns as there were "interest points" found. It's shorthand for
giantMatrix = [dsift{1,1} dsift{2,1} dsift{3,1} ... dsift{N,M}];

Implementing a linear, binary SVM (support vector machine)

I want to implement a simple SVM classifier, in the case of high-dimensional binary data (text), for which I think a simple linear SVM is best. The reason for implementing it myself is basically that I want to learn how it works, so using a library is not what I want.
The problem is that most tutorials go up to an equation that can be solved as a "quadratic problem", but they never show an actual algorithm! So could you point me either to a very simple implementation I could study, or (better) to a tutorial that goes all the way to the implementation details?
Thanks a lot!
Some pseudocode for the Sequential Minimal Optimization (SMO) method can be found in this paper by John C. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. There is also a Java implementation of the SMO algorithm, which is developed for research and educational purpose (SVM-JAVA).
Other commonly used methods to solve the QP optimization problem include:
constrained conjugate gradients
interior point methods
active set methods
But be aware that some math knowledge is needed to understand this things (Lagrange multipliers, Karush–Kuhn–Tucker conditions, etc.).
Are you interested in using kernels or not? Without kernels, the best way to solve these kinds of optimization problems is through various forms of stochastic gradient descent. A good version is described in http://ttic.uchicago.edu/~shai/papers/ShalevSiSr07.pdf and that has an explicit algorithm.
The explicit algorithm does not work with kernels but can be modified; however, it would be more complex, both in terms of code and runtime complexity.
Have a look at liblinear and for non linear SVM's at libsvm
The following paper "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM" top of page 11 describes the Pegasos algorithm also for kernels.It can be downloaded from http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf
It appears to be a hybrid of coordinate descent and subgradient descent. Also, line 6 of the algorithm is wrong. In the predicate the second appearance of y_i_t should be replaced with y_j instead.
I would like to add a little supplement to the answer about original Platt's work.
There is a bit simplified version presented in Stanford Lecture Notes, but derivation of all the formulas should be found somewhere else (e.g. this random notes I found on the Internet).
If it's ok to deviate from original implementations, I can propose you my own variation of the SMO algorithm that follows.
class SVM:
def __init__(self, kernel='linear', C=10000.0, max_iter=100000, degree=3, gamma=1):
self.kernel = {'poly':lambda x,y: np.dot(x, y.T)**degree,
'rbf':lambda x,y:np.exp(-gamma*np.sum((y-x[:,np.newaxis])**2,axis=-1)),
'linear':lambda x,y: np.dot(x, y.T)}[kernel]
self.C = C
self.max_iter = max_iter
def restrict_to_square(self, t, v0, u):
t = (np.clip(v0 + t*u, 0, self.C) - v0)[1]/u[1]
return (np.clip(v0 + t*u, 0, self.C) - v0)[0]/u[0]
def fit(self, X, y):
self.X = X.copy()
self.y = y * 2 - 1
self.lambdas = np.zeros_like(self.y, dtype=float)
self.K = self.kernel(self.X, self.X) * self.y[:,np.newaxis] * self.y
for _ in range(self.max_iter):
for idxM in range(len(self.lambdas)):
idxL = np.random.randint(0, len(self.lambdas))
Q = self.K[[[idxM, idxM], [idxL, idxL]], [[idxM, idxL], [idxM, idxL]]]
v0 = self.lambdas[[idxM, idxL]]
k0 = 1 - np.sum(self.lambdas * self.K[[idxM, idxL]], axis=1)
u = np.array([-self.y[idxL], self.y[idxM]])
t_max = np.dot(k0, u) / (np.dot(np.dot(Q, u), u) + 1E-15)
self.lambdas[[idxM, idxL]] = v0 + u * self.restrict_to_square(t_max, v0, u)
idx, = np.nonzero(self.lambdas > 1E-15)
self.b = np.sum((1.0-np.sum(self.K[idx]*self.lambdas, axis=1))*self.y[idx])/len(idx)
def decision_function(self, X):
return np.sum(self.kernel(X, self.X) * self.y * self.lambdas, axis=1) + self.b
In simple cases it works not much worth than sklearn.svm.SVC, comparison shown below (I have posted code that generates these images on GitHub)
I used quite different approach to derive formulas, you may want to check my preprint on ResearchGate for details.

Resources