opencv 3 channel image data offset for cuda kernel [duplicate] - opencv

I'm doing linear filtering on images using CUDA. I use 2D thread blocks and 2D grid to make the problem natural. Here's how I index: (height and width are image dimensions)
dim3 BlockDim(16,16);
dim3 GridDim;
GridDim.x = (width + 15) / 16;
GridDim.y = (height + 15) / 16;
In kernel I access the locations as follows:
unsigned int xIndex = blockIdx.x*16+ threadIdx.x;
unsigned int yIndex = blockIdx.y*16+ threadIdx.y;
unsigned int tid = yIndex * width + xIndex;
And I want to return four boundaries (i'll cater them later on). I do this as:
if(yIndex>=height-N || xIndex>=width-N || yIndex<N || xIndex<N)
return;
Where N is the number of pixels at each boundary I don't want to calculate.
Problem:
The code runs fine on all standard images sizes. But for some random image sizes it shows diagonal line(s). For example in my case 500x333 image (even when no dimension is multiple of 16) is showing correct output whereas 450x365 is showing diagonal lines in the output. The problem remains even if I just return the extra threads of grid and nothing else like this:
if(yIndex>=height || xIndex>=width)
return;
The code remains the same, some inputs run fine while others don't. Can anybody spot the bug? I have attached the input and output samples here: IMAGES Thanks!
Update:
Kernel Code (Simplified to return input image, but gives the same problem)
__global__ void filter_8u_c1_kernel(unsigned char* in, unsigned char* out, int width, int height, float* filter, int fSize)
{
unsigned int xIndex = blockIdx.x*BLOCK_SIZE + threadIdx.x;
unsigned int yIndex = blockIdx.y*BLOCK_SIZE + threadIdx.y;
unsigned int tid = yIndex * width + xIndex;
unsigned int N = filterSize/2;
if(yIndex>=height-N || xIndex>=width-N || yIndex<N || xIndex<N)
return;
/*Filter code removed, still gives the same problem*/
out[tid] = in[tid];
}
Update 2:
I have also removed the return statement by reversing the if condition. But the problem persists.
if(yIndex<=height-N && xIndex<=width-N && yIndex>N && xIndex>N){
/*Kernel Code*/
}

There are quite a few things you still haven't described very well, but based on the information you have posted, I built what I am guessing is a reasonable repro case with parameters which match a case you say it failing (450 x 364 with filterSize=5):
#include <stdio.h>
#include <assert.h>
template<int filterSize>
__global__ void filter_8u_c1_kernel(unsigned char* in, unsigned char* out, int width, int height, float* filter, int fSize)
{
unsigned int xIndex = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int yIndex = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int tid = yIndex * width + xIndex;
unsigned int N = filterSize/2;
if(yIndex>=height-N || xIndex>=width-N || yIndex<N || xIndex<N)
return;
out[tid] = in[tid];
}
int main(void)
{
const int width = 450, height = 365, filterSize=5;
const size_t isize = sizeof(unsigned char) * size_t(width * height);
unsigned char * _in, * _out, * out;
assert( cudaMalloc((void **)&_in, isize) == cudaSuccess );
assert( cudaMalloc((void **)&_out, isize) == cudaSuccess );
assert( cudaMemset(_in, 'Z', isize) == cudaSuccess );
assert( cudaMemset(_out, 'A', isize) == cudaSuccess );
const dim3 BlockDim(16,16);
dim3 GridDim;
GridDim.x = (width + BlockDim.x - 1) / BlockDim.x;
GridDim.y = (height + BlockDim.y - 1) / BlockDim.y;
filter_8u_c1_kernel<filterSize><<<GridDim,BlockDim>>>(_in,_out,width,height,0,0);
assert( cudaPeekAtLastError() == cudaSuccess );
out = (unsigned char *)malloc(isize);
assert( cudaMemcpy(out, _out, isize, cudaMemcpyDeviceToHost) == cudaSuccess);
for(int i=0; i<width; i++) {
fprintf(stdout, "%d: ", i);
for(int j=0; j<height; j++) {
unsigned int idx = i + j*width;
fprintf(stdout, "%c", out[idx]);
}
fprintf(stdout, "\n");
}
return cudaThreadExit();
}
When run it does exactly what I would expect, overwriting the output memory with the input everywhere except for the first and last two lines and the first and last two entries in all the lines in between. This is running with CUDA 3.2 on OS X 10.6.5 with a compute 1.2 GPU. So whatever is happening in you code, it isn't happening in my repro case, which either means I have misinterpreted what you have written, or there is something else you haven't described which is causing the problem.

Related

How to implement nearest neighbours image resizing algorithm in CUDA?

My main purpose is to load frames from a video with OpenCV, then copy it Nvidia Gpu memory, resize it with a Cuda based nearest neighbour algorithm, then copy it back to the host side and visualise it with cv::imshow()
Unfortunately, I always got segmentation faults. There could be a problem with defining the amount of bytes to be copied or with the data conversions.
Below, you can find the main parts of the source code, but here is the repo for the full project:
https://github.com/foxakarmi/imageResize
Main function:
#include <iostream>
#include "cuda_utils.h"
#include "yololayer.h"
#include <opencv2/highgui/highgui.hpp>
void *buffers[3];
int main() {
cv::VideoCapture capture;
cv::Mat frame;
capture.open("/p.mp4");
if (!capture.isOpened()) {
std::cout << "can not open" << std::endl;
return -1;
}
capture.read(frame);
CUDA_CHECK(cudaMalloc(&buffers[0], frame.cols * frame.step[0]));
CUDA_CHECK(cudaMalloc(&buffers[1], 3 * 640 * 640));
buffers[2] = malloc(3 * 640 * 640);
while (capture.read(frame)) {
CUDA_CHECK(cudaMemcpy(buffers[0], frame.ptr(), frame.step[0] * frame.rows, cudaMemcpyHostToDevice))
cudaNearestResize((uchar *) buffers[0], (uchar *) buffers[1], frame.cols, frame.rows, 640, 640);
CUDA_CHECK(cudaMemcpy(buffers[2], buffers[1], 640 * 640 * 3, cudaMemcpyDeviceToHost))
cv::Mat foo;
foo.data = static_cast<uchar *>(buffers[2]);
cv::imshow("img", foo);
cv::waitKey(1);
}
capture.release();
return 0;
}
The .cu file containing the kernel and a wrapper function:
#include <opencv2/core/hal/interface.h>
#include "yololayer.h"
#include "cuda_utils.h"
__global__ void kernelNearestNeighbourResize(uchar *src_img, uchar *dst_img, int src_w, int src_h, int dst_w, int dst_h) {
int i = blockDim.y * blockIdx.y + threadIdx.y;
int j = blockDim.x * blockIdx.x + threadIdx.x;
int channel = 3;
if (i < dst_h && j < dst_w) {
int iIn = i * src_h / dst_h;
int jIn = j * src_w / dst_h;
dst_img[(i * dst_w + j) * channel + 0] = src_img[(iIn * src_w + jIn) * channel + 0];
dst_img[(i * dst_w + j) * channel + 1] = src_img[(iIn * src_w + jIn) * channel + 1];
dst_img[(i * dst_w + j) * channel + 2] = src_img[(iIn * src_w + jIn) * channel + 2];
}
}
cudaError_t cudaNearestResize(uchar *src_img, uchar *dst_img, int src_w, int src_h, int dst_w, int dst_h) {
if (!src_img || !dst_img)
return cudaErrorInvalidDevicePointer;
if (src_w == 0 || src_h == 0 || dst_w == 0 || dst_h == 0)
return cudaErrorInvalidValue;
kernelNearestNeighbourResize <<< 3600, 256>>>(
src_img, dst_img, src_w,
src_h, dst_w, dst_h);
return cudaGetLastError();
}
Below you can see a complete working solution.
There are 3 main issues in your code:
The setup for the CUDA grid is incorrect. See an example how to set it in my code below (just an initial working version that you can further improve). See some general info here: The CUDA Programming Model.
Note: the grid setup can have a meaningful effect on the overall performance, and it is not trivial to optimize.
See more info here: How do I choose grid and block dimensions for CUDA kernels?.
When copying the data to the device, you used frame.ptr() instead of frame.data.
You only set the data pointer for the output cv::Mat foo, without properly initializing it.
So the cv::Mat metadata (rows, cols etc.) were not set and cv::imshow could not show it properly.
In my code it is not required - see below.
Note that your code skips the first frame. I kept this behavior. You could include the first frame by checking if dst_img was already initialized, and if not (since it's the first frame) - initialize it and the CUDA buffers.
Some more notes on the code below:
There's no need to allocate buffer[2] for the host output image.
Instead I initialized the cv::Mat with the proper size and use it's allocated buffer.
I renamed the device buffers, and added cudaFree for them.
It is safer to pass the number of channels to the kernel, rather than making it assume it is 3.
I passed the step (AKA stride) of the images to the kernel. This will support the case where the images have padding (see about it here: stride and padding of an image).
Code for main:
#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include "cuda_runtime.h"
#include <assert.h>
#define CUDA_CHECK(x) { cudaError_t cudaStatus = x; assert(cudaStatus == cudaSuccess); }
cudaError_t cudaNearestResize(unsigned char *src_img, unsigned char *dst_img, int channel,
int src_w, int src_h, int src_step, int dst_w, int dst_h, int dst_step);
int main()
{
cv::VideoCapture capture;
cv::Mat frame;
capture.open("/p.mp4");
if (!capture.isOpened())
{
std::cout << "can not open" << std::endl;
return -1;
}
capture.read(frame);
int src_w = frame.cols;
int src_h = frame.rows;
int src_step = (int)frame.step[0];
int channels = frame.channels();
int data_type = frame.type();
assert((data_type & CV_MAT_DEPTH_MASK) == CV_8U); // assert that it is a uchar image
// Parameters you can change:
int dst_w = 640;
int dst_h = 640;
cv::Mat dst_img(dst_h, dst_w, data_type);
int dst_step = (int)dst_img.step[0];
void * src_dev_buffer;
void * dst_dev_buffer;
CUDA_CHECK(cudaMalloc(&src_dev_buffer, src_h * src_step));
CUDA_CHECK(cudaMalloc(&dst_dev_buffer, dst_h * dst_step));
while (capture.read(frame))
{
// assert that the current frame has the same type and dimensions as the first one (should be guaranteed by the video decoder):
assert(frame.cols == src_w);
assert(frame.rows == src_h);
assert((int)frame.step[0] == src_step);
assert(frame.type() == data_type);
CUDA_CHECK(cudaMemcpy(src_dev_buffer, frame.data, src_h * src_step, cudaMemcpyHostToDevice));
CUDA_CHECK(cudaNearestResize((unsigned char *)src_dev_buffer, (unsigned char *)dst_dev_buffer, channels, src_w, src_h, src_step, dst_w, dst_h, dst_step));
CUDA_CHECK(cudaMemcpy(dst_img.data, dst_dev_buffer, dst_h * dst_step, cudaMemcpyDeviceToHost));
cv::imshow("dst_img", dst_img);
cv::waitKey(1);
}
CUDA_CHECK(cudaFree(src_dev_buffer));
CUDA_CHECK(cudaFree(dst_dev_buffer));
capture.release();
return 0;
}
Code for the CUDA kernel and the wrapping function:
#include "cuda_runtime.h"
__global__ void kernelNearestNeighbourResize(unsigned char *src_img, unsigned char *dst_img, int channels,
int src_w, int src_h, int src_step, int dst_w, int dst_h, int dst_step)
{
int i = blockDim.y * blockIdx.y + threadIdx.y;
int j = blockDim.x * blockIdx.x + threadIdx.x;
if (i < dst_h && j < dst_w)
{
int iIn = i * src_h / dst_h;
int jIn = j * src_w / dst_w;
int src_offset = i * dst_step + j * channels;
int dst_offset = iIn * src_step + jIn * channels;
for (int c = 0; c < channels; ++c)
{
dst_img[src_offset + c] = src_img[dst_offset + c];
}
}
}
cudaError_t cudaNearestResize(unsigned char *src_img, unsigned char *dst_img, int channels,
int src_w, int src_h, int src_step, int dst_w, int dst_h, int dst_step)
{
if (!src_img || !dst_img)
return cudaErrorInvalidDevicePointer;
if (src_w == 0 || src_h == 0 || dst_w == 0 || dst_h == 0)
return cudaErrorInvalidValue;
// The grid dimensions
dim3 dimBlock(32, 32);
dim3 dimGrid(dst_w / 32 + 1, dst_h / 32 + 1);
kernelNearestNeighbourResize << < dimGrid, dimBlock >> >(
src_img, dst_img, channels,
src_w, src_h, src_step, dst_w, dst_h, dst_step);
return cudaGetLastError();
}

RGB2GRAY with CUDA and CImg library

I need to do a RGB2GRAY image processing algorithm. I just need some help in completing the global function or how I can access the * d_src pointer. This is my code, your help will be greatly appreciated.
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "CImg.h"
#include <iostream>
using namespace std;
using namespace cimg_library;
__global__ void rgb2gray(unsigned char * d_src, unsigned char * d_dst, int width, int height){
int pos_x = blockIdx.x * blockDim.x + threadIdx.x;
int pos_y = blockIdx.y * blockDim.y + threadIdx.y;
if (pos_x >= width || pos_y >= height)
return;
}
int main(){
//Load image
CImg<unsigned char> src("lena.jpg");
int width = src.width();
int height = src.height();
unsigned long sizee = src.size();
int sze = width * height;
cout << sze << endl;
//create pointer to image
unsigned char *h_src = src.data();
CImg<unsigned char> dst(width, height, 1, 1);
unsigned char *h_dst = dst.data();
unsigned char *d_src;
unsigned char *d_dst;
cout << sizee << endl;
cudaMalloc((void**)&d_src, sizee);
cudaMalloc((void**)&d_dst, width*height*sizeof(int));
cudaMemcpy(d_src, h_src, sizee, cudaMemcpyHostToDevice);
//launch the kernel
rgb2gray << <(width/16,height/16,1), (16, 16, 1) >> >(d_src, d_dst, width, height);
//force the printf()s to flush
cudaDeviceSynchronize();
// copy back the result array to the CPU
cudaMemcpy(h_dst, d_dst, width*height, cudaMemcpyDeviceToHost);
cudaFree(d_src);
cudaFree(d_dst);
CImgDisplay main_disp(dst, "After Processing");
while (!main_disp.is_closed())
main_disp.wait();
return 0;
}
Firstly, since your dst object consists of unsigned char, allocate d_dst as follows;
cudaMalloc((void**)&d_dst, width*height*sizeof(unsigned char));
Next, grid must cover every pixels, considering cases when width or height are not a multiple of 16. Launch kernel with following kernel configuration.
dim3 blkDim (16, 16, 1);
dim3 grdDim ((width + 15)/16, (height + 15)/16, 1);
rgb2gray<<<grdDim, blkDim>>>(d_src, d_dst, width, height);
Lastly, your kernel should look like this. Note that RGB channels are split in d_src.
int pos_x = blockIdx.x * blockDim.x + threadIdx.x;
int pos_y = blockIdx.y * blockDim.y + threadIdx.y;
if (pos_x >= width || pos_y >= height)
return;
unsigned char r = d_src[pos_y * width + pos_x];
unsigned char g = d_src[(height + pos_y) * width + pos_x];
unsigned char b = d_src[(height * 2 + pos_y) * width + pos_x];
unsigned int _gray = (unsigned int)((float)(r + g + b) / 3.0f + 0.5);
unsigned char gray = _gray > 255 ? 255 : _gray;
d_dst[pos_y * width + pos_x] = gray;
You can see the full code here.

Access pixels in gpu::mat

I'd like to know how to access pixel information when using OpenCV GPU. I'm currently downloading gpu::mat information to a mat variable but it is too slow.
Does anyone know how to do it?
You could access to the data inside a kernel.
For (row,col) the row and column number,
the value of a pixel with channel number ch < 3 will be:
uint8_t val = gpumat.data[ (row*gpumat.step) + col*gpumat.channels() + ch];
So let say you have an BGR input image stored on a GpuMat called src and you want to
assign each pixel value to a destination image called dst (also GpuMat).
You could call the kernel
kernel_assign_pixel<<<gridDim, blockDim>>>
(src.data, dst.data, src.rows, src.cols, src.step, dst.step, src.channels());
Defined in the following way
__global__ void kernel_assign_pixel
(uint8_t* src, uint8_t* dst, int MaxRows, int MaxCols, int iStep, int oStep, int MaxC)
{
unsigned int row = blockIdx.x * blockDim.x + threadIdx.x; //Row number
unsigned int col = blockIdx.y * blockDim.y + threadIdx.y; //Column number
unsigned int ch = blockIdx.z * blockDim.z + threadIdx.z; //Channel number
if (row<MaxRows && col<MaxCols && ch < MaxC)
{
int tidIn = row * iStep + col * MaxC + ch;
int tidOut = row * oStep + col * MaxC + ch;
dst[tidOut]=src[tidIn];
}
}

Converting a 2D Canny Edge image to 1D edge pixel array in CUDA - Strange behaviour

I have a CUDA kernel which takes an edge image and processes it to create a smaller, 1D array of the edge pixels. Now here is the strange behaviour. Every time I run the kernel and calculate the number of edge pixels in "d_nlist" (see the code near the printf), I get a greater pixel count each time, even when I use the same image and stop the program completely and re-run. Therefore, each time I run it, it takes longer to run, until eventually, it throws an un-caught exception.
My question is, how can I stop this from happening so that I can get consistent results each time I run the kernel?
My device is a Geforce 620.
Constants:
THREADS_X = 32
THREADS_Y = 4
PIXELS_PER_THREAD = 4
MAX_QUEUE_LENGTH = THREADS_X * THREADS_Y * PIXELS_PER_THREAD
IMG_WIDTH = 256
IMG_HEIGHT = 256
IMG_SIZE = IMG_WIDTH * IMG_HEIGHT
BLOCKS_X = IMG_WIDTH / (THREADS_X * PIXELS_PER_THREAD)
BLOCKS_Y = IMG_HEIGHT / THREADS_Y
The kernel is as follows:
__global__ void convert2DEdgeImageTo1DArray( unsigned char const * const image,
unsigned int* const list, int* const glob_index ) {
unsigned int const x = blockIdx.x * THREADS_X*PIXELS_PER_THREAD + threadIdx.x;
unsigned int const y = blockIdx.y * THREADS_Y + threadIdx.y;
volatile int qindex = -1;
volatile __shared__ int sh_qindex[THREADS_Y];
volatile __shared__ int sh_qstart[THREADS_Y];
sh_qindex[threadIdx.y] = -1;
// Start by making an array
volatile __shared__ unsigned int sh_queue[MAX_QUEUE_LENGTH];
// Fill the queue
for(int i=0; i<PIXELS_PER_THREAD; i++)
{
int const xx = i*THREADS_X + x;
// Read one image pixel from global memory
unsigned char const pixel = image[y*IMG_WIDTH + xx];
unsigned int const queue_val = (y << 16) + xx;
if(pixel)
{
do {
qindex++;
sh_qindex[threadIdx.y] = qindex;
sh_queue[threadIdx.y*THREADS_X*PIXELS_PER_THREAD + qindex] = queue_val;
} while (sh_queue[threadIdx.y*THREADS_X*PIXELS_PER_THREAD + qindex] != queue_val);
}
// Reload index from smem (last thread to write to smem will have updated it)
qindex = sh_qindex[threadIdx.y];
}
// Let thread 0 reserve the space required in the global list
__syncthreads();
if(threadIdx.x == 0 && threadIdx.y == 0)
{
// Find how many items are stored in each list
int total_index = 0;
#pragma unroll
for(int i=0; i<THREADS_Y; i++)
{
sh_qstart[i] = total_index;
total_index += (sh_qindex[i] + 1u);
}
// Calculate the offset in the global list
unsigned int global_offset = atomicAdd(glob_index, total_index);
#pragma unroll
for(int i=0; i<THREADS_Y; i++)
{
sh_qstart[i] += global_offset;
}
}
__syncthreads();
// Copy local queues to global queue
for(int i=0; i<=qindex; i+=THREADS_X)
{
if(i + threadIdx.x > qindex)
break;
unsigned int qvalue = sh_queue[threadIdx.y*THREADS_X*PIXELS_PER_THREAD + i + threadIdx.x];
list[sh_qstart[threadIdx.y] + i + threadIdx.x] = qvalue;
}
}
The following is the method which calls the kernel:
void call2DTo1DKernel(unsigned char const * const h_image)
{
// Device side allocation
unsigned char *d_image = NULL;
unsigned int *d_list = NULL;
int h_nlist, *d_nlist = NULL;
cudaMalloc((void**)&d_image, sizeof(unsigned char)*IMG_SIZE);
cudaMalloc((void**)&d_list, sizeof(unsigned int)*IMG_SIZE);
cudaMalloc((void**)&d_nlist, sizeof(int));
// Time measurement initialization
cudaEvent_t start, stop, startio, stopio;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventCreate(&startio);
cudaEventCreate(&stopio);
// Start timer w/ io
cudaEventRecord(startio,0);
// Copy image data to device
cudaMemcpy((void*)d_image, (void*)h_image, sizeof(unsigned char)*IMG_SIZE, cudaMemcpyHostToDevice);
// Start timer
cudaEventRecord(start,0);
// Kernel call
// Phase 1 : Convert 2D binary image to 1D pixel array
dim3 dimBlock1(THREADS_X, THREADS_Y);
dim3 dimGrid1(BLOCKS_X, BLOCKS_Y);
convert2DEdgeImageTo1DArray<<<dimGrid1, dimBlock1>>>(d_image, d_list, d_nlist);
// Stop timer
cudaEventRecord(stop,0);
cudaEventSynchronize(stop);
// Stop timer w/ io
cudaEventRecord(stopio,0);
cudaEventSynchronize(stopio);
// Time measurement
cudaEventElapsedTime(&et,start,stop);
cudaEventElapsedTime(&etio,startio,stopio);
// Time measurement deinitialization
cudaEventDestroy(start);
cudaEventDestroy(stop);
cudaEventDestroy(startio);
cudaEventDestroy(stopio);
// Get list size
cudaMemcpy((void*)&h_nlist, (void*)d_nlist, sizeof(int), cudaMemcpyDeviceToHost);
// Report on console
printf("%d pixels processed...\n", h_nlist);
// Device side dealloc
cudaFree(d_image);
cudaFree(d_space);
cudaFree(d_list);
cudaFree(d_nlist);
}
Thank you very much in advance for your help everyone.
As a preamble, let me suggest some troubleshooting steps that are useful:
instrument your code with proper cuda error checking
run your code with cuda-memcheck e.g. cuda-memcheck ./myapp
If you do the above steps, you'll find that your kernel is failing, and the failures have to do with global writes of size 4. So that will focus your attention on the last segment of your kernel, beginning with the comment // Copy local queues to global queue
Regarding your code, then, you have at least 2 problems:
The addressing/indexing in your final segment of your kernel, where you are writing the individual queues out to global memory, is messed up. I'm not going to try and debug this for you.
You are not initializing your d_nlist variable to zero. Therefore when you do an atomic add to it, you are adding your values to a junk value, which will tend to increase as you repeat the process.
Here's some code which has the problems removed, (I did not try to sort out your queue copy code) and error checking added. It produces repeatable results for me:
$ cat t216.cu
#include <stdio.h>
#include <stdlib.h>
#define THREADS_X 32
#define THREADS_Y 4
#define PIXELS_PER_THREAD 4
#define MAX_QUEUE_LENGTH (THREADS_X*THREADS_Y*PIXELS_PER_THREAD)
#define IMG_WIDTH 256
#define IMG_HEIGHT 256
#define IMG_SIZE (IMG_WIDTH*IMG_HEIGHT)
#define BLOCKS_X (IMG_WIDTH/(THREADS_X*PIXELS_PER_THREAD))
#define BLOCKS_Y (IMG_HEIGHT/THREADS_Y)
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
__global__ void convert2DEdgeImageTo1DArray( unsigned char const * const image,
unsigned int* const list, int* const glob_index ) {
unsigned int const x = blockIdx.x * THREADS_X*PIXELS_PER_THREAD + threadIdx.x;
unsigned int const y = blockIdx.y * THREADS_Y + threadIdx.y;
volatile int qindex = -1;
volatile __shared__ int sh_qindex[THREADS_Y];
volatile __shared__ int sh_qstart[THREADS_Y];
sh_qindex[threadIdx.y] = -1;
// Start by making an array
volatile __shared__ unsigned int sh_queue[MAX_QUEUE_LENGTH];
// Fill the queue
for(int i=0; i<PIXELS_PER_THREAD; i++)
{
int const xx = i*THREADS_X + x;
// Read one image pixel from global memory
unsigned char const pixel = image[y*IMG_WIDTH + xx];
unsigned int const queue_val = (y << 16) + xx;
if(pixel)
{
do {
qindex++;
sh_qindex[threadIdx.y] = qindex;
sh_queue[threadIdx.y*THREADS_X*PIXELS_PER_THREAD + qindex] = queue_val;
} while (sh_queue[threadIdx.y*THREADS_X*PIXELS_PER_THREAD + qindex] != queue_val);
}
// Reload index from smem (last thread to write to smem will have updated it)
qindex = sh_qindex[threadIdx.y];
}
// Let thread 0 reserve the space required in the global list
__syncthreads();
if(threadIdx.x == 0 && threadIdx.y == 0)
{
// Find how many items are stored in each list
int total_index = 0;
#pragma unroll
for(int i=0; i<THREADS_Y; i++)
{
sh_qstart[i] = total_index;
total_index += (sh_qindex[i] + 1u);
}
// Calculate the offset in the global list
unsigned int global_offset = atomicAdd(glob_index, total_index);
#pragma unroll
for(int i=0; i<THREADS_Y; i++)
{
sh_qstart[i] += global_offset;
}
}
__syncthreads();
// Copy local queues to global queue
/*
for(int i=0; i<=qindex; i+=THREADS_X)
{
if(i + threadIdx.x > qindex)
break;
unsigned int qvalue = sh_queue[threadIdx.y*THREADS_X*PIXELS_PER_THREAD + i + threadIdx.x];
list[sh_qstart[threadIdx.y] + i + threadIdx.x] = qvalue;
}
*/
}
void call2DTo1DKernel(unsigned char const * const h_image)
{
// Device side allocation
unsigned char *d_image = NULL;
unsigned int *d_list = NULL;
int h_nlist=0, *d_nlist = NULL;
cudaMalloc((void**)&d_image, sizeof(unsigned char)*IMG_SIZE);
cudaMalloc((void**)&d_list, sizeof(unsigned int)*IMG_SIZE);
cudaMalloc((void**)&d_nlist, sizeof(int));
cudaCheckErrors("cudamalloc fail");
// Time measurement initialization
cudaEvent_t start, stop, startio, stopio;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventCreate(&startio);
cudaEventCreate(&stopio);
float et, etio;
// Start timer w/ io
cudaEventRecord(startio,0);
cudaMemcpy(d_nlist, &h_nlist, sizeof(int), cudaMemcpyHostToDevice);
// Copy image data to device
cudaMemcpy((void*)d_image, (void*)h_image, sizeof(unsigned char)*IMG_SIZE, cudaMemcpyHostToDevice);
cudaCheckErrors("cudamemcpy 1");
// Start timer
cudaEventRecord(start,0);
// Kernel call
// Phase 1 : Convert 2D binary image to 1D pixel array
dim3 dimBlock1(THREADS_X, THREADS_Y);
dim3 dimGrid1(BLOCKS_X, BLOCKS_Y);
convert2DEdgeImageTo1DArray<<<dimGrid1, dimBlock1>>>(d_image, d_list, d_nlist);
cudaDeviceSynchronize();
cudaCheckErrors("kernel fail");
// Stop timer
cudaEventRecord(stop,0);
cudaEventSynchronize(stop);
// Stop timer w/ io
cudaEventRecord(stopio,0);
cudaEventSynchronize(stopio);
// Time measurement
cudaEventElapsedTime(&et,start,stop);
cudaEventElapsedTime(&etio,startio,stopio);
// Time measurement deinitialization
cudaEventDestroy(start);
cudaEventDestroy(stop);
cudaEventDestroy(startio);
cudaEventDestroy(stopio);
// Get list size
cudaMemcpy((void*)&h_nlist, (void*)d_nlist, sizeof(int), cudaMemcpyDeviceToHost);
cudaCheckErrors("cudaMemcpy 2");
// Report on console
printf("%d pixels processed...\n", h_nlist);
// Device side dealloc
cudaFree(d_image);
// cudaFree(d_space);
cudaFree(d_list);
cudaFree(d_nlist);
}
int main(){
unsigned char *image;
image = (unsigned char *)malloc(IMG_SIZE * sizeof(unsigned char));
if (image == 0) {printf("malloc fail\n"); return 0;}
for (int i =0 ; i<IMG_SIZE; i++)
image[i] = rand()%2;
call2DTo1DKernel(image);
call2DTo1DKernel(image);
call2DTo1DKernel(image);
call2DTo1DKernel(image);
call2DTo1DKernel(image);
cudaCheckErrors("some error");
return 0;
}
$ nvcc -arch=sm_20 -O3 -o t216 t216.cu
$ ./t216
32617 pixels processed...
32617 pixels processed...
32617 pixels processed...
32617 pixels processed...
32617 pixels processed...
$ ./t216
32617 pixels processed...
32617 pixels processed...
32617 pixels processed...
32617 pixels processed...
32617 pixels processed...
$

colored image to greyscale image using CUDA parallel processing

I am trying to solve a problem in which i am supposed to change a colour image to a greyscale image. For this purpose i am using CUDA parallel approach. The kerne code i am invoking on the GPU is as follows.
__global__
void rgba_to_greyscale(const uchar4* const rgbaImage,
unsigned char* const greyImage,
int numRows, int numCols)
{
int absolute_image_position_x = blockIdx.x;
int absolute_image_position_y = blockIdx.y;
if ( absolute_image_position_x >= numCols ||
absolute_image_position_y >= numRows )
{
return;
}
uchar4 rgba = rgbaImage[absolute_image_position_x + absolute_image_position_y];
float channelSum = .299f * rgba.x + .587f * rgba.y + .114f * rgba.z;
greyImage[absolute_image_position_x + absolute_image_position_y] = channelSum;
}
void your_rgba_to_greyscale(const uchar4 * const h_rgbaImage,
uchar4 * const d_rgbaImage,
unsigned char* const d_greyImage,
size_t numRows,
size_t numCols)
{
//You must fill in the correct sizes for the blockSize and gridSize
//currently only one block with one thread is being launched
const dim3 blockSize(numCols/32, numCols/32 , 1); //TODO
const dim3 gridSize(numRows/12, numRows/12 , 1); //TODO
rgba_to_greyscale<<<gridSize, blockSize>>>(d_rgbaImage,
d_greyImage,
numRows,
numCols);
cudaDeviceSynchronize(); checkCudaErrors(cudaGetLastError());
}
i see a line of dots in the first pixel line.
error i am getting is
libdc1394 error: Failed to initialize libdc1394
Difference at pos 51 exceeds tolerance of 5
Reference: 255
GPU : 0
my input/output images
Can anyone help me with this??? thanks in advance.
I recently joined this course and tried your solution but it don't work so, i tried my own. You are almost correct. The correct solution is this:
__global__`
void rgba_to_greyscale(const uchar4* const rgbaImage,
unsigned char* const greyImage,
int numRows, int numCols)
{`
int pos_x = (blockIdx.x * blockDim.x) + threadIdx.x;
int pos_y = (blockIdx.y * blockDim.y) + threadIdx.y;
if(pos_x >= numCols || pos_y >= numRows)
return;
uchar4 rgba = rgbaImage[pos_x + pos_y * numCols];
greyImage[pos_x + pos_y * numCols] = (.299f * rgba.x + .587f * rgba.y + .114f * rgba.z);
}
The rest is same as your code.
Now, since I posted this question I have been continuously working on this problem there are a couple of improvements that should be done in order to get this problem correct now I realize my initial solution was wrong . Changes to be done:-
1. absolute_position_x =(blockIdx.x * blockDim.x) + threadIdx.x;
2. absolute_position_y = (blockIdx.y * blockDim.y) + threadIdx.y;
Secondly,
1. const dim3 blockSize(24, 24, 1);
2. const dim3 gridSize((numCols/16), (numRows/16) , 1);
In the solution we are using a grid of numCols/16 * numCols/16
and blocksize of 24 * 24
code executed in 0.040576 ms
#datenwolf : thanks for answering above!!!
Since you are not aware of the image size. It is best to choose any reasonable dimension of the two-dimensional block of threads and then check for two conditions. The first one is that the pos_x and pos_y indexes in the kernel do not exceed numRows and numCols. Secondly the grid size should be just above the total number of threads in all the blocks.
const dim3 blockSize(16, 16, 1);
const dim3 gridSize((numCols%16) ? numCols/16+1 : numCols/16,
(numRows%16) ? numRows/16+1 : numRows/16, 1);
libdc1394 error: Failed to initialize libdc1394
I don't think that this is a CUDA problem. libdc1394 is a library used to access IEEE1394 aka FireWire aka iLink video devices (DV camcorders, Apple iSight camera). That library doesn'r properly initialize, hence you're not getting usefull results. Basically it's NINO: Nonsens In Nonsens Out.
the calculation of absolute x & y image positions is perfect.
but when u need to access that particular pixel in the coloured image , shouldn't you u use the following code??
uchar4 rgba = rgbaImage[absolute_image_position_x + (absolute_image_position_y * numCols)];
I thought so, when comparing it to a code you'd write to execute the same problem in serial code.
Please let me know :)
You still should have a problem with run time - the conversion will not give a proper result.
The lines:
uchar4 rgba = rgbaImage[absolute_image_position_x + absolute_image_position_y];
greyImage[absolute_image_position_x + absolute_image_position_y] = channelSum;
should be changed to:
uchar4 rgba = rgbaImage[absolute_image_position_x + absolute_image_position_y*numCols];
greyImage[absolute_image_position_x + absolute_image_position_y*numCols] = channelSum;
__global__
void rgba_to_greyscale(const uchar4* const rgbaImage,
unsigned char* const greyImage,
int numRows, int numCols)
{
int rgba_x = blockIdx.x * blockDim.x + threadIdx.x;
int rgba_y = blockIdx.y * blockDim.y + threadIdx.y;
int pixel_pos = rgba_x+rgba_y*numCols;
uchar4 rgba = rgbaImage[pixel_pos];
unsigned char gray = (unsigned char)(0.299f * rgba.x + 0.587f * rgba.y + 0.114f * rgba.z);
greyImage[pixel_pos] = gray;
}
void your_rgba_to_greyscale(const uchar4 * const h_rgbaImage, uchar4 * const d_rgbaImage,
unsigned char* const d_greyImage, size_t numRows, size_t numCols)
{
//You must fill in the correct sizes for the blockSize and gridSize
//currently only one block with one thread is being launched
const dim3 blockSize(24, 24, 1); //TODO
const dim3 gridSize( numCols/24+1, numRows/24+1, 1); //TODO
rgba_to_greyscale<<<gridSize, blockSize>>>(d_rgbaImage, d_greyImage, numRows, numCols);
cudaDeviceSynchronize(); checkCudaErrors(cudaGetLastError());
}
The libdc1394 error is not related to firewire etc in this case - it is the library that udacity is using to compare the image your program creates to the reference image. And what is is saying is that the difference between your image and the reference image has been been exceeded by a specific threshold, for that position ie. pixel.
You are running following number of block and grids:
const dim3 blockSize(numCols/32, numCols/32 , 1); //TODO
const dim3 gridSize(numRows/12, numRows/12 , 1); //TODO
yet you are not using any threads in your kernel code!
int absolute_image_position_x = blockIdx.x;
int absolute_image_position_y = blockIdx.y;
think this way, the width of an image can be divide into absolute_image_position_x parts of column and the height of an image can be divide into absolute_image_position_y parts of row. Now the box each of the cross section it creates you need to change/redraw all the pixels in terms of greyImage, parallely. Enough spoiler for an assignment :)
same code with with ability to handle non-standard input size images
int idx=blockDim.x*blockIdx.x+threadIdx.x;
int idy=blockDim.y*blockIdx.y+threadIdx.y;
uchar4 rgbcell=rgbaImage[idx*numCols+idy];
greyImage[idx*numCols+idy]=0.299*rgbcell.x+0.587*rgbcell.y+0.114*rgbcell.z;
}
void your_rgba_to_greyscale(const uchar4 * const h_rgbaImage, uchar4 * const d_rgbaImage,
unsigned char* const d_greyImage, size_t numRows, size_t numCols)
{
//You must fill in the correct sizes for the blockSize and gridSize
//currently only one block with one thread is being launched
int totalpixels=numRows*numCols;
int factors[]={2,4,8,16,24,32};
vector<int> numbers(factors,factors+sizeof(factors)/sizeof(int));
int factor=1;
while(!numbers.empty())
{
if(totalpixels%numbers.back()==0)
{
factor=numbers.back();
break;
}
else
{
numbers.pop_back();
}
}
const dim3 blockSize(factor, factor, 1); //TODO
const dim3 gridSize(numRows/factor+1, numCols/factor+1,1); //TODO
rgba_to_greyscale<<<gridSize, blockSize>>>(d_rgbaImage, d_greyImage, numRows, numCols);
1- int x =(blockIdx.x * blockDim.x) + threadIdx.x;
2- int y = (blockIdx.y * blockDim.y) + threadIdx.y;
And in grid and block size
1- const dim3 blockSize(32, 32, 1);
2- const dim3 gridSize((numCols/32+1), (numRows/32+1) , 1);
Code executed in 0.036992 ms.
const dim3 blockSize(16, 16, 1); //TODO
const dim3 gridSize( (numRows+15)/16, (numCols+15)/16, 1); //TODO
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
uchar4 rgba = rgbaImage[y*numRows + x];
float channelSum = .299f * rgba.x + .587f * rgba.y + .114f * rgba.z;
greyImage[y*numRows + x] = channelSum;

Resources